Water Security

Water Security 2017-05-24T18:36:22+00:00

Water Infrastructure Security

Reliable, resilient, and secure water infrastructure is critical to ensure that water sources and water distribution systems are protected from natural disasters and intentional disruptive events.  Researchers at Sandia National Laboratories have developed decision support tools to address the complex challenges that face water infrastructure. This work was motivated by the signing of Homeland Security Presidential Directive 9 (HSPD-9) by President G.W. Bush in 2004 that called for more rigorous monitoring and assessment our nation’s water sources and distribution systems after 9/11. Sandia’s water security software packages (in parentheses below) are designed to help decision makers design more effective monitoring, response, and restoration strategies for water distribution systems.

View the history of Water Security

View History
  • 2003 Federal Laboratory Consortium Interagency Partnership Award for RAM-W
  • 2008 Finalist for the 2008 Franz Edelman Award
  • 2008 COIN-OR INFORMS 2008 Cup award
  • 2010 R&D100 Award
  • 2011 Federal Laboratory Consortium Interagency Partnership Award for Water Security Research Team
  • US Environmental Protection Agency, national Homeland Security Research Center
  • Argonne National Laboratory
  • Texas A&M University
  • Purdue University
2016

  • Seth, A., Klise, K., Siirola, J., Haxton, T., and Laird, C. (2016). “Testing Contamination Source Identification Methods for Water Distribution Networks.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000619, 04016001.
  • Seth, Hackebeil, G.A., Klise, K.A., Haxton, T., Murray, R., Laird, C.D. (2016), Efficient Reduction of Optimal Disinfectant Booster Station Placement Formulations for Security of Large-Scale Water Distribution Networks, accepted for publication in Engineering Optimization.
  • Klise, K., Murray, R., Bynum, M., Moriarty, D., (2016), Water Network Tool for Resilience, version 0.1, Technical Report SAND2016-11253, Sandia National Laboratories.

2014

  • Mann, A., Hackebeil, G., and Laird, C. (2014). “Explicit Water Quality Model Generation and Rapid Multiscenario Simulation.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000278, 666-677.
  • Klise, K., Siirola, J., Hart, D., Hart, W., Phillips, C., Haxton, T., Murray, R., Janke, R., Taxon, T., Laird,C., Seth, A., Hackebeil, G., McGee, S., A. Mann (2014),Water security toolkit user manual version 1.2. Technical Report SAND2014-16973, Sandia National Laboratories.

2013

  • Klise, K., Phillips, C., and Janke, R. (2013). “Two-Tiered Sensor Placement for Large Water Distribution Network Models.” J. Infrastruct. Syst., 10.1061/(ASCE)IS.1943-555X.0000156, 465-473.

2012

  • McKenna, S., Vugrin, E., Hart, D., and Aumer, R. (2013). “Multivariate Trajectory Clustering for False Positive Reduction in Online Event Detection.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000240, 3-12.
  • Murray, R., T. Haxton, S.A. McKenna, D.B. Hart, K. Klise, M. Koch, S. Martin, M. Wilson, V. Cruz, L. Cutler, 2010, Water Quality Event Detection Systems for Drinking Water Contamination Warning Systems, Development, Testing, and Application of CANARY, EPA/600/R-010/036U.S. Environmental Protection Agency, National Homeland Security Research Center, Cincinnati, Ohio, 91 pp.

2011

  • Murray, T. Haxton, W. E. Hart, C. A. Phillips (2011), “Real-world case studies for sensor network design of drinking water contamination warning systems,” Handbook of Water and Wastewater Systems Protection, editors: R. M. Clark, S. Hakim, and A. Ostfeld, Series: Protecting Critical Infrastructure, Springer, New York, 2011, pp. 319-348.
  • Hart, W., Murray, R., and Phillips, C. (2011) Minimize Impact or Maximize Benefit: The Role of Objective Function in Approximately Optimizing Sensor Placement for Municipal Water Distribution Networks. World Environmental and Water Resources Congress 2011: pp. 330-339.
  • Koch, M. and McKenna, S. (2011). “Distributed Sensor Fusion in Water Quality Event Detection.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)WR.1943-5452.0000094, 10-19.
  • McKenna, S.A., D.B. Hart, R. Murray and T. Haxton, (2011), Testing and Evaluation of Water Quality Event Detection Algorithms, Chapter 19, in: Handbook for Securing Water and Wastewater Systems, R.M. Clark, S. Hakim, and A. Ostfeld (editors), Springer, New York, pp. 369-396

2010

  • Hart, D., Hart, W., McKenna, S., Murray, R., and Phillips, C. (2011) Integrating Event Detection System Operating Characteristics into Sensor Placement Optimization. Water Distribution Systems Analysis 2010: pp. 367-378.
  • Murray, T. Haxton, R. Janke, W. E. Hart, J. W. Berry, and C. A. Phillips (2010). “Sensor Network Design for Contamination Warning Systems: A Compendium of Research Results and Case Studies Using the TEVA-SPOT Software.” U. S. Environmental Protection Agency, Office of Research and Development, National Homeland Security Research Center, Cincinnati OH. EPA/600/R-09/141.
  • Jaeger, C.D., Hightower, M.M., Torres, T., (2010), Evolution of Sandia’s Risk Assewssment Methodology for Water and Wastewater U tilities (RAM-W), Technical Report SAND2010-0521C, Sandia National Laboratories.

2009

  • Murray, W. E. Hart, C. A. Phillips, J. Berry, E. Boman, R. D. Carr, L. A. Riesen, J.-P. Watson, T. Baranowski, G. Gray, J. Herrmann, R. Janke, T. N. Taxon, J. Uber, K. Morley, (2009), “U. S. Environmental Protection Agency uses Operations Research to Reduce Drinking Water Contamination Risks,” Edelman finalist paper, Interfaces, Vol. 39, No. 1, pp. 57-68
  • Berry, J., Carr, R., Hart, W., Leung, V., Phillips, C., and Watson, J. (2009). “Designing Contamination Warning Systems for Municipal Water Networks Using Imperfect Sensors.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(2009)135:4(253), 253-263.
  • Hart, D.B. and S.A. McKenna, 2009, CANARY User’s Manual, Version 4.1, U.S. Environmental Protection Agency, Office of Research and Development, National Homeland Security Research Center, EPA 600/R-08/040A, 54 pp.
  • McKenna, S.A., D.B. Hart, K. Klise, M. Koch, S. Martin, M. Wilson, V. Cruz, L. Cutler, R. Murray, T. Haxton (2009), Water Quality Event Detection Systems for Drinking Water Contamination Warning Systems, Development, Testing, and Application of CANARY, U.S. Environmental Protection Agency, National Homeland Security Research Center, Cincinnati, Ohio, 125 pp.

2008

  • Ostfeld, A., Uber, J., Salomons, E., Berry, J., Hart, W., Phillips, C., Watson, J., Dorini, G., Jonkergouw, P., Kapelan, Z., di Pierro, F., Khu, S., Savic, D., Eliades, D., Polycarpou, M., Ghimire, S., Barkdoll, B., Gueli, R., Huang, J., McBean, E., James, W., Krause, A., Leskovec, J., Isovitsch, S., Xu, J., Guestrin, C., VanBriesen, J., Small, M., Fischbeck, P., Preis, A., Propato, M., Piller, O., Trachtman, G., Wu, Z., and Walski, T. (2008). “The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms.” Water Resour. Plann. Manage., 6(556), 556-568
  • Hart, W.E., J.W. Berry, E. Boman, C.A. Phillips, L. A. Riesen, and J.P. Watson (2008), Limited-Memory Techniques for Sensor Placement in Water Distribution Networks, Proceedings of the Learning and Intelligent Optimization conference, Springer Volume 5313, 125-137.
  • Berry, J., Boman, E., Phillips, C., and Riesen, L. (2008) Low-Memory Lagrangian Relaxation Methods for Sensor Placement in Municipal Water Networks. World Environmental and Water Resources Congress 2008: pp. 1-10.
  • Hart, W., Berry, J., Boman, E., Murray, R., Phillips, C., Riesen, L., and Watson, J. (2008) The TEVA-SPOT Toolkit for Drinking Water Contaminant Warning System Design. World Environmental and Water Resources Congress 2008: pp. 1-12.
  • McKenna, S.A., M. Wilson and K.A. Klise, 2008, Detecting Changes in Water Quality Data, American Water Works Association Journal, Vol. 100, No. 1, pp. 74-85.
  • Romero-Gomez, P., Ho, C., and Choi, C. (2008). “Mixing at Cross Junctions in Water Distribution Systems. I: Numerical Study.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(2008)134:3(285), 285-294.
  • Austin, R., Waanders, B., McKenna, S., and Choi, C. (2008). “Mixing at Cross Junctions in Water Distribution Systems. II: Experimental Study.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(2008)134:3(295), 295-302.

2007

  • McKenna, S., Hart, D., Klise, K., Cruz, V., and Wilson, M. (2007) Event Detection from Water Quality Time Series. World Environmental and Water Resources Congress 2007: pp. 1-12.

2006

  • Berry, J., Hart, W., Phillips, C., Uber, J., and Watson, J. (2006). “Sensor Placement in Municipal Water Networks with Temporal Integer Programming Models.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(2006)132:4(218), 218-224.
  • Carr, R.D., H.J. Greenberg, W.E. Hart, G. Konjevod, E. Lauer, H. Lin, T. Morrison, C.A. Phillips, 2006, Robust optimization of contaminant sensor placement for community water systems, Mathematical Programming, 107(1), 337-356
  • Laird, C., Biegler, L., and van Bloemen Waanders, B. (2006). Mixed-Integer Approach for Obtaining Unique Solutions in Source Inversion of Water Networks J. Water Resour. Plann. Manage., 4(242), 242-251
  • Klise, K. and McKenna, S. (2008) Multivariate Applications for Detecting Anomalous Water Quality. Water Distribution Systems Analysis Symposium 2006: pp. 1-11.
  • McKenna, S., Klise, K., and Wilson, M. (2008) Testing Water Quality Change Detection Algorithms. Water Distribution Systems Analysis Symposium 2006: pp. 1-15.
  • Klise, K.A. and S.A. McKenna (2006), Water quality change detection: multivariate algorithms, SPIE 6203, Optics and Photonics in Global Homeland Security II, 62030J (9 May 2006); doi: 10.1117/12.665019
  • McKenna, S., Hart, D., and Yarrington, L. (2006). “Impact of Sensor Detection Limits on Protecting Water Distribution Systems from Contamination Events.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-9496(2006)132:4(305), 305-309.

2005

  • Laird, C., Biegler, L., van Bloemen Waanders, B., and Bartlett, R. (2005). Contamination Source Determination for Water Networks. Water Resour. Plann. Manage., 2(125), 125-134