Nathan Schroeder

R&D Mechanical Engineer

Author profile picture

R&D Mechanical Engineer

nrschro@sandia.gov

Biography

Nathan Schroeder is an R&D Mechanical Engineer working at the National Solar Thermal Test Facility (NSTTF). Nathan is involved in Gen 3 particle- based acquisition and controls systems. He has conducted over 200 hours of falling particle receiver test operation as part of the Generation 3 down selection process. Nathan is also involved in thermal energy storage and other concentrating solar technology research, including decarbonization of cement production.

In graduate school, Nathan focused on energy and thermal sciences with an emphasis on renewable energy and energy storage. He started his graduate research by modeling microgrid dispatch strategies for the Emera microgrid demonstration on Kirkland Air Force Base. An opportunity at the seminal facility for concentrating solar power research, the NSTTF, brought him to Sandia in 2019. Since then, Nathan has progressed from a graduate intern to member of the technical staff, and finally to senior member of the technical staff.

His non-work interests include skiing, gardening, pond building, bee keeping, and hiking.

Research Interests

Industrial decarbonization of cement and calcination processes

Education

  • Bachelor of Science, Mechanical Engineering, University of New Mexico, 2018
  • Master of Science, Mechanical Engineering, University of New Mexico, 2021

Publications

  • Schroeder, N., Ho, C., & Ho, C. (2022). Ceramic proppant dust generation in falling particle receiver applications [Conference Paper]. AIP Conference Proceedings. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131201714&origin=inward Publication ID: 70656
  • Sment, J., Magaldi, M., D’Agostino, U., Bassetti, F., Repole, K., González-Portillo, L., Schroeder, N., Albrecht, K., Ho, C., & Ho, C. (2022). Design and Technoeconomic Analysis of High-Temperature Particle Conveyance Components for a 100 MWe Concentrating Solar Power Plant. https://doi.org/10.2172/1846724 Publication ID: 80489
  • Ho, C., Ortega, J., Vorobieff, P., Mohan, G., Glen, A., Sanchez, A.L., Dexheimer, D., Schroeder, N., Martins, V., & Martins, V. (2022). Characterization of Particle and Heat Losses from a High-Temperature Particle Receiver (2nd Ed). https://doi.org/10.2172/1842674 Publication ID: 80025
  • Ho, C., Sment, J., Albrecht, K., Mills, B., Schroeder, N., & Schroeder, N. (2021). Gen 3 Particle Pilot Plant (G3P3) — High-Temperature Particle System for Concentrating Solar Power (Phases 1 and 2). https://doi.org/10.2172/1832285 Publication ID: 76834
  • Ho, C., Bush, H., Villa, D., Rinaldi, N., Schroeder, N., Sment, J., & Sment, J. (2021). 100% Carbon-Free Electricity for Sandia NM and KAFB Using Concentrating Solar Power (CSP) (SAND Report). https://doi.org/10.2172/1854742 Publication ID: 76054
  • Schroeder, N., Ho, C., Sanchez, A.L., & Sanchez, A.L. (2021). Design and Testing of a Recirculating Dust Filtration Loop for High-Temperature Particle Receivers [Conference Paper]. https://www.osti.gov/biblio/1890888 Publication ID: 76088
  • Sment, J., Repole, K., Magaldi, M., Gonzáles-Portillo, L., Ho, C., Schroeder, N., & Schroeder, N. (2021). Technoeconomic Sensitivities of Horizontal Conveyance Components on LCOE for a Particle-Based CSP Plant [Conference Proceeding]. https://www.osti.gov/biblio/1891438 Publication ID: 76167
  • Sment, J., Magaldi, M., Repole, K., Schroeder, N., & Schroeder, N. (2021). Design Considerations for Horizontal High-Temperature Particle Conveyance Components [Conference Proceeding]. https://www.osti.gov/biblio/1891966 Publication ID: 76212
  • Sment, J., Repole, K., Magaldi, M., González-Portillo, L., Ho, C., Schroeder, N., & Schroeder, N. (2021). I7 – Technoeconomic Sensitivities of Horizontal Conveyance Components on LCOE [Conference Poster]. https://doi.org/10.2172/1888405 Publication ID: 75784
  • Schroeder, N., Sanchez, A.L., Ho, C., & Ho, C. (2021). Design and Testing for a Recirculating Dust Filtration Loop for High-Temperature Particle Receivers [Conference Presenation]. https://doi.org/10.2172/1888382 Publication ID: 75737
  • Sment, J., Ho, C., Albrecht, K., Schroeder, N., & Schroeder, N. (2021). Horizontal High-Temperature Particle Conveyance (HOTPAC) 37368 [Conference Presenation]. https://www.osti.gov/biblio/1883471 Publication ID: 75325
  • Ho, C., Ortega, J., Vorobieff, P., Mohan, G., Glen, A., Sanchez, A.L., Dexheimer, D., Schroeder, N., Martins, V., & Martins, V. (2021). Characterization of Particle and Heat Losses from a High-Temperature Particle Receiver. https://doi.org/10.2172/1819248 Publication ID: 75456
  • Schroeder, N. (2021). Assessment of Particle Candidates for Falling Particle Receiver Applications Through Irradiance and Thermal Cycling [Conference Presenation]. https://doi.org/10.2172/1868173 Publication ID: 78435
  • Ho, C., Schroeder, N., Laubscher, H., Yue, L., Mills, B., Shaeffer, R., Christian, J., Albrecht, K., & Albrecht, K. (2021). Receiver Design and On-Sun Testing for G3P3-USA (full paper) [Conference Paper]. https://www.osti.gov/biblio/1862190 Publication ID: 77941
  • Schroeder, N., Albrecht, K., & Albrecht, K. (2021). ASSESMENT OF PARTICLE CANDIDATES FOR FALLING PARTICLE RECEIVER APPLICATIONS THROUGH IRRADIANCE AND THERMAL CYCLING [Conference Paper]. https://www.osti.gov/biblio/1862639 Publication ID: 77959
  • Schroeder, N., Laubscher, H., Ho, C., Mills, B., & Mills, B. (2021). RECEIVER OUTLET TEMPERATURE CONTROLLER FOR FALLING PARTICLE RECEIVER APPLICATIONS [Conference Paper]. https://www.osti.gov/biblio/1862640 Publication ID: 77960
  • Schroeder, N., Laubscher, H., Mills, B., Ho, C., & Ho, C. (2021). Receiver outlet temperature control for falling particle receiver applications [Conference Paper]. Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85111776537&origin=inward Publication ID: 75069
  • Schroeder, N., Albrecht, K., & Albrecht, K. (2021). Assesment of particle candidates for falling particle receiver applications through irradiance and thermal cycling [Conference Paper]. Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021. https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85107877026&origin=inward Publication ID: 75071
  • Schroeder, N. (2020). PERFORMANCE IMPROVEMENTS FOR NEXT GENERATION FALLING PARTICLE RECEIVER SYSTEMS. https://www.osti.gov/biblio/1714418 Publication ID: 71685
  • Ho, C., Schroeder, N., Laubscher, H., Yue, L., Mills, B., Shaeffer, R., Christian, J., Albrecht, K., & Albrecht, K. (2020). Receiver Design and On-Sun Testing for G3P3-USA (presentation) [Conference Poster]. https://www.osti.gov/biblio/1822649 Publication ID: 70993
  • Schroeder, N., Ho, C., & Ho, C. (2020). Ceramic Proppant Dust Generation and Collection Methods for Falling Particle Receivers [Conference Poster]. https://www.osti.gov/biblio/1823411 Publication ID: 71046
  • Yue, L., Schroeder, N., Ho, C., & Ho, C. (2020). Particle Flow Testing of a Multistage Falling Particle Receiver Concept: Staggered Angle Iron Receiver (StAIR) [Conference Poster]. https://www.osti.gov/biblio/1807354 Publication ID: 73700
  • Yue, L., Schroeder, N., Ho, C., & Ho, C. (2020). PARTICLE FLOW TESTING OF A MULTISTAGE FALLING PARTICLE RECEIVER CONCEPT: STAGGERED ANGLE IRON RECEIVER (STAIR) [Conference Poster]. https://www.osti.gov/biblio/1770842 Publication ID: 73030
  • Yue, L., Schroeder, N., Ho, C., & Ho, C. (2020). Particle Flow Testing of a Multistage Falling Particle Receiver Concept: Staggered Angle Iron Receiver (StAIR) [Conference Poster]. https://www.osti.gov/biblio/1770843 Publication ID: 73031
Showing 10 of 24 publications.