An illustration of a vertical axis wind turbine

Back to the drawing board: Reinventing offshore wind turbines

August 16, 2022 9:00 am Published by

New Sandia software allows for design of innovative floating turbines

Brandon Ennis, Sandia National Laboratories’ offshore wind technical lead, had a radically new idea for offshore wind turbines: instead of a tall, unwieldy tower with blades at the top, he imagined a towerless turbine with blades pulled taut like a bow.

an illustration of an innovative offshore wind turbine design.
Sandia National Laboratories’ innovative design for offshore wind: no heavy tower, instead wind blades pulled taut with guy wires. (Illustration by Brent Haglund)

This design would allow the massive generator that creates electricity from spinning blades to be placed closer to the water, instead of on the top of a tower 500 feet above. This makes the turbine less top-heavy and reduces the size and cost of the floating platform needed to keep it afloat. Sandia filed a patent application for the design in 2020.

However, before he could set his idea in motion, the team needed to build software capable of modeling the response of the turbine and floating platform to different wind and sea conditions to determine the optimal design of the whole system.

Now, the Sandia team have a functional design tool, or “drawing board,” and can start designing and optimizing their lighter floating wind turbine system.

“To design our floating wind turbine system, we needed a design tool that can simulate the wind, waves, blade elasticity, platform motion and the controllers,” Ennis said. “There are a few tools that can do some of what we need but without all of the pertinent two-way coupled dynamics for design and optimization of this kind of wind turbine. It was a big undertaking, but it was essential. There can’t be a floating, vertical-axis wind turbine industry without a trusted tool like this.”

Lighter, cheaper turbines for offshore wind

Much of the U.S.’s offshore wind blows across water more than 200-feet deep. At those depths, it would be very expensive to build the rigid support structures typically used by wind turbines. However, wind turbines that can float above the sea floor could play an important role in diversifying our sources of renewable energy and improving the stability of the grid as cities and states move closer to achieving their net-zero emission goals, said Ryan Coe, a mechanical engineer in Sandia’s water power group.

“The high electrical demand on the coasts is one reason why offshore wind looks attractive; people tend to live away from where the onshore wind is the strongest and there’s not enough space in cities for solar panels,” Coe said. “Also, offshore wind provides power at different times of the day than solar and onshore wind.”

However, floating offshore wind does come with its own challenges, Ennis added. Chiefly, it is very expensive to support the wind turbines and to maintain them when they’re out at sea. The goal of one Department of Energy Advanced Research Project Agency-Energy program is to optimize the design of floating wind turbines, platforms and control systems to maximize power output while minimizing costs, he said.

a vertical axis wind turbine
A historical photo of Sandia National Laboratories’ experimental 34-meter-diameter, vertical-axis wind turbine built in Texas in the 1980s. (Image courtesy Sandia National Laboratories)

“For us the question becomes how do we remove mass and cost from the system while maximizing energy capture, which is where we got our innovative, towerless, vertical-axis design,” Ennis said.

Most wind turbines today are based around a tall tower with three blades turning a horizontal shaft that cranks a generator behind the blades in the turbine’s nacelle, the box at the top of the turbine that contains the rotor and other important components. But that’s not the only way to design a wind turbine, Ennis said. Some turbines have two or more blades supported by a vertical shaft with a generator below the blades. This design, called a Darrieus vertical-axis wind turbine, has a lower center of gravity and can weigh less than a traditional wind turbine, Ennis said, but one of its main challenges is that it’s difficult to protect the turbine from extreme winds.

For traditional, horizontal-axis wind turbines, the blades can rotate away from intense, damaging winds, but the Darrieus design catches the wind from every direction. The Sandia design replaces the central vertical tower with taut guy wires, Ennis said. These wires can be shortened or lengthened to adjust for changing wind conditions to maximize energy capture while controlling strain. Additionally, replacing the shaft with wires reduces the weight of the turbine even more, allowing the floating platform to be even smaller and less expensive.

Read the complete news release.

Share this story:

Tags: ,