Sandia scientists help enhance advanced nuclear reactor analysis March 15, 2023 10:14 am Published by Admin Nuclear power is a significant source of steady carbon-neutral electricity, and advanced reactors can add more of it to the U.S. grid, which is vital for the environment and economy. For decades, Sandia National Laboratories has supported the Nuclear Regulatory Commission in its role of regulating and licensing nuclear reactors. With many advanced nuclear reactor designs being developed for potential licensing, this support is as important as ever, said Sandia geosciences engineer Kyle Clavier. One of Sandia’s newest aids for NRC licensing efforts is a standardized screening method to determine the most important radioactive isotopes that could leave an advanced reactor site in the unlikely event of an accident. The Sandia team recently applied it to a conceptual design for a heat pipe reactor, and shared the results with the NRC and greater scientific community. Radioactive isotopes are unstable forms of elements that release energy in various forms of potentially harmful radiation as part of the process of becoming more stable isotopes. For example, naturally occurring radon-222 is a product of the decay of uranium and in turn decays into polonium-218, releasing alpha radiation. This decay process is particularly harmful if it occurs in someone’s lungs, which is why the EPA urges homeowners to test for the build-up of radon gas in their houses. “We’re having a nuclear renaissance right now, where quite a few new reactor designs are coming out that promise to have more passive safety features, be more modular and have other advantages over conventional nuclear reactors,” said Clavier, who has worked on the method and applying it to an example reactor design. “We are working to provide the NRC the tools it needs to make sure that when these new advanced reactors are licensed, the NRC can accurately quantify the potential risks and thus ensure that the reactors are safe for operation.” Read the complete news release. Share this story: Email « Previous Next »