This illustration shows how a team at Sandia National Laboratories used Kelvin probe force microscopy to locate places where electron flows get stuck, potentially leading to engineering longer-lasting, more efficient batteries.

New testing method yields pathway to better, longer-lasting batteries

December 6, 2021 8:00 am Published by

Using a microscopic method for measuring electrical potential, a team of scientists at Sandia National Laboratories may have discovered how to make a longer-lasting, more efficient battery.

The team of Elliot Fuller, Josh Sugar and Alec Talin detailed their findings in an article published Oct. 19 in American Chemical Society Energy Letters.

“One of the challenges with solid-state batteries is that at the boundaries between different parts of the battery — a cathode and a layer of ion-conducting electrolyte, let’s say — something interferes with the flow of electrons,” Talin said.

Solid-state batteries employ solid electrolytes instead of electrochemical gels and liquids and generally power small electronics. Most researchers suspected that there was a loss of voltage or electrical potential at interfaces within the battery, but not which interface was responsible for most of the impedance in the battery. The team started work five years ago to get some clarity.

“There were two main motivations for this. The first was fundamental: we want to have good models for batteries that we can use to develop better materials,” Talin explained. “The second thing was to figure out how we can engineer the interfaces to make them less impeding. In our case, it really has to do a lot with how fast lithium ions can move in the Si anode used in the study.”

Read the complete news release.

Share this story: