Gen 3 Particle Pilot Plant (G3P3):
Integrated High-Temperature Particle System for CSP

PI: Clifford K. Ho
Concentrating Solar Technologies Dept.
Sandia National Laboratories
Albuquerque, New Mexico
ckho@sandia.gov, (505) 844-2384

SAND2018-6688 PE
G3P3 Objectives

- **De-risk, design, construct, and operate** a multi-MW$_t$ particle receiver system
 - Heat working fluid (e.g., sCO$_2$ or air) to ≥ 700 °C
 - 6 hours of energy storage
 - $> 2,000$ hours of on-sun operation
 - Meet SunShot cost and performance goals

- **Leverage** international expertise and CSP activity

- Accelerate **commercialization** of G3P3 technology

Phase 1
- **Risk Mitigation**
 - Receiver
 - Storage
 - Heat exchanger
 - Particles, Lift
- 18 months
 - FY19 – FY20

Phase 2
- **G3P3 Integrated System Design**
- 6 months
 - FY20

Phase 3
- **G3P3 Test and Operation**
- 3 years
 - FY21 – FY23

DOE downselection
Value Proposition

- Proposed particle receiver system has significant advantages over current state-of-the-art CSP systems
 - Sub-zero to over ~1000 °C operating temperatures
 - No freezing and need for expensive trace heating
 - Use of inert, non-corrosive, inexpensive materials
 - Direct storage (no need for additional heat exchanger)
 - Direct heating of particles (no flux limitations on tubes)
Gen 3 Particle Pilot Plant (G3P3)
Integrated System

National Solar Thermal Test Facility (NSTTF), Albuquerque, NM
Gen 3 Particle Pilot Plant (G3P3) Integrated System

G3P3-USA system next to the existing 200-ft tower at the NSTTF

Baseline Design

High-Temperature Bucket Elevator

Elevator Buffer Volume

Multi-Aperture Falling Particle Receiver

High-Temperature Storage Bin

Particle-to-sCO₂ Heat Exchanger

Low-Temperature Storage Bin

35 m (115 ft)

33 m (107 ft)
Major Components

- Particles
- Receiver and Feed Bin
- Particle Storage
- Particle Heat Exchanger
- Particle Lift and Conveyance
- Balance of System
G3P3 Summary

- **Significant advantages**
 - Direct heating of particles
 - Wide temperature range (sub-zero to >1000 °C)
 - Inexpensive, durable, non-corrosive, inert
 - Demonstrated ability to achieve >700 °C on-sun with hundreds of hours of operation

- **Gaps and risks**
 - Particle attrition and wear; dust formation
 - Heat loss (receiver, storage, heat exchanger, lift)
 - Particle-to-working-fluid heat transfer
 - Thermomechanical stresses in heat exchanger and storage tanks
 - Materials erosion

On-sun testing of the falling particle receiver at Sandia National Laboratories
Questions?

Cliff Ho, (505) 844-2384, ckho@sandia.gov