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The MHz Barrier

Power electronics switching frequencies are approaching or have
surpassed 1 MHz at power levels <1 W and >100 kW

There are a bunch of things that don’t work or that we don’t know
(well) about designing magnetics past a few MHz

* What core materials are good? [1] What metrics constitute “good”? [2]

* How should core loss and full component losses be measured? [3-4]

* How can ac copper loss be mitigated? [5-10]

* What do we do about dimensional resonance? [11]

* When should air core components be used? [2,12]

* What can be achieved with IC integration?



Managing copper loss in the MHz regime

Braided parallel strands of wire (litz wire) with
Dstrana < Skin Depth can suppress the skin and
proximity effects at hundreds of kHz

48 AWG is already very expensive and only good
up to a few MHz.

Litz will not save us in the MHz regime!
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Where does current actually flow at HF?

High-frequency current flows within a single skin depth of the
surface of a conductor where the H field is strongest.

J [afem=2]

The terms “skin effect” and “proximity effect” are deeply

misleading. -
* Theyboth come from solving the magnetic diffusion
equation. Separating them is artificial

1. 29E-84

* The true “skin effect” is almost never encountered. . e
Current only flows evenly over the entire surface in the 57k
case of a circular conductor in isolation. 2. 14E+03

* The “proximity effect” has very little to do with proximity. I-l.uaf-as
Conductors being close to each other does not -

necessarily increase the proximity effect
Core Inside Core Both Sides

Just remember that current crowds near strong H fields.



Double sided conduction in inductors

Consider a pot-core inductor with single-layer winding and the H fields adjacent to the conductors.
The Hfield up the inner side of the winding is Hj,,5ige =
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Inductor test results
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Prototypes achieved quality factors of ~800 " ‘ pedanes VA
with solid-core wire and ~1000 with litz Designing for double-sided conduction revealed a modular

(but not at all frequencies!) inductor structure capable of covering a wider application

space with fewer piece types to manufacture 6



Double sided conduction in transformers




Double sided conduction in transformers
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Double sided conduction in transformers
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Double sided conduction in transformers
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Transformer test results
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Copper loss reduces by 50% when skin depth limited.
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Experimentally built with flexible PCB ”
Experimentally achieved ~20% loss reduction as expected at 3 MHz
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MHz Opportunity - Integration

Core-Type

Shell-Type (e ))_))')")"- |

* Enables massive integrated processing
* Lowerinterconnect losses
* More conducive for high-volume fabrication
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This is one of my favorite examples of a successful collaboration

* Prof. Alex Hanson, UT Austin — power electronics
* Prof. Jean Anne Incorvia, UT Austin — magnetic materials
* Dr. Jianliang Lin, Southwest Research Institute — oxide sputtering

With funding from a UT Austin/SwRI seed grant
and a NASA NSTGRO fellowship



Fast growth or low loss?

Metallic
Fast electroplating
More eddy currents

NiFe core material 210

Ceramic/Composite
Slow sputtering
High resistivity

5-10 nm

CoZrO core material
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Improving sputter rate
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Performance is not sacrificed

Co (%) 78.2 58.4

"g = Zr (%) 9.3 7.1

5 [ a 0 (%) 12.5 34.5
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* High Saturation > 0.6 T (plenty) These are all static metrics. CoZrO

* High Permeability (u) ~ 60 (plenty)  (ea(ly shines at high frequency
* Low Coercivity (H,) <20 Oe




We will shortly test components at 10-50 MHz

* Components with CoZrO demonstrated excellent performance
almost a decade ago. We aim to demonstrate similar or improved
performance with materials that were more quickly grown

* Near-complete core-type (toroid, U-core) component process flow
* Resonant techniques for measuring loss at 10-50 MHz

RF PA

5082 : 3Q
Trans. Line
Impedance

Transformer

Measurement Inductor

Lf%@f:: |

Low-(QQ Filter E

Measurement Circuit

17



References

[11A.). Hanson, J.A. Belk, S. Lim, C.R. Sullivan and D.J. Perreault, “Measurements and Performance Factor Comparisons of Magnetic Materials at High Frequency," in IEEE Transactions on
Power Electronics, vol. 31, no. 11, pp. 7909-7925, Nov. 2016, doi: 10.1109/TPEL.2015.2514084.

[2] A. J. Hanson, "Opportunities in Magnetic Materials for High-Frequency Power Conversion," in MRS Communications, Aug 2022, doi: https://doi.org/10.1557/s43579-022-00225-1

[3] M. Solomentseyv, A. J. Hanson, “A Resonant Approach to Transformer Loss Characterization," 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA,
2022, pp. 596-603, doi: 10.1109/APEC43599.2022.9773516.

[4] A. Brown, M. Solomentsev, A. J. Hanson, “Parallel Resonant Loss Characterization of high Frequency Magnetic Components,” IEEE Journal of Emerging and Selected Topics in Power
Electronics (Accepted 2024)

[5]1R.S.Yang, A.J. Hanson, B.A. Reese, C.R. Sullivan, D.J. Perreault, “A Low-Loss Inductor Structure and Design Guidelines for High-Frequency Applications," in IEEE Transactions on Power
Electronics, vol. 34, no. 10, pp. 9993-10005, Oct. 2019, doi: 10.1109/TPEL.2019.2892397.

[6]R.S.Yang, A.J. Hanson, C.R. Sullivan, D.J. Perreault, “Design Flexibility of a Modular Low-Loss High-Frequency Inductor Structure," in IEEE Transactions on Power Electronics, vol. 36, no.
11, pp. 13013-13024, Nov. 2021, doi: 10.1109/TPEL.2021.3076774.

[71 M. Solomentsev and A. J. Hanson, "Modeling Current Distribution Within Conductors and Between Parallel Conductors in High-Frequency Magnetics," in IEEE Open Journal of Power
Electronics, vol. 3, pp. 635-650, October 2022, doi: 10.1109/0JPEL.2022.3212903.

[8] O. Okeke, M. Solomentsev, A. J. Hanson, “Double-Sided Conduction: A Loss-Reduction Technique for High Frequency Transformers," 2022 |IEEE Applied Power Electronics Conference and
Exposition (APEC), Houston, TX, USA, 2022, pp. 611-618, doi: 10.1109/APEC43599.2022.9773592.

[91 A. Nguyen, A.Phanse, M. Solomentsev, and A. J. Hanson, "A Low-Leakage, Low-Loss Magnetic Transformer Structure for High-Frequency Applications," 2022 24th European Conference
on Power Electronics and Applications (EPE'22 ECCE Europe), Hanover, Germany, 2022, pp. 1-11.

[10] A. Brown, M. Solomentsev, C. Fu, O. Okeke, and A. J. Hanson, “Double Sided Conduction in N:1 Transformers," 2024 |IEEE Applied Power Electronics Conference (APEC), Long Beach, CA,
USA, 2024, pp. 884-889, doi: 10.1109/APEC48139.2024.10509440.

[11]T. Guillod, W. V. R. Roberts and C. R. Sullivan, "Characterization and Impact of Large-Signal Dielectric Properties in MnZn Ferrites," 2024 IEEE Applied Power Electronics Conference and
Exposition (APEC), Long Beach, CA, USA, 2024, pp. 384-390, doi: 10.1109/APEC48139.2024.10509366.

[12] M. Solomentsev and A. J. Hanson, "At What Frequencies Should Air-Core Magnetics Be Used?," in IEEE Transactions on Power Electronics, vol. 38, no. 3, pp. 3546-3558, March 2023, doi:
10.1109/TPEL.2022.3222993.

18



	Slide 1: Multi-MHz Magnetics Off and On Chip
	Slide 2: The MHz Barrier
	Slide 3: Managing copper loss in the MHz regime
	Slide 4: Where does current actually flow at HF?
	Slide 5: Double sided conduction in inductors
	Slide 6: Inductor test results
	Slide 7: Double sided conduction in transformers
	Slide 8: Double sided conduction in transformers
	Slide 9: Double sided conduction in transformers
	Slide 10: Double sided conduction in transformers
	Slide 11: Transformer test results
	Slide 12: MHz Opportunity - Integration
	Slide 13
	Slide 14: Fast growth or low loss?
	Slide 15: Improving sputter rate
	Slide 16: Performance is not sacrificed
	Slide 17: We will shortly test components at 10-50 MHz
	Slide 18: References

