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Outline
* Needs of energy storage in renewable energy systems

« Second-life batteries (SLBs)

- Aging of second-life EV batteries

- Energy storage system design with SLBs

- Standards for the use of second-life EV Batteries
* Recycling of EV Lithium Ion Batteries

* The project is to answer three questions:
 Can spent EV batteries be used for storage applications?
» If yes, how can they be used?

« How can the system be designed to be safe, reliable, and cost

effective? .:.



Electric Vehicle & Battery Growth

Electric vehicle sales e
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Demand for EV batteries reached more than 750 GWh in 2023, up

Source: Global Battery Alliance; World Economic

SDSU Forum; McKinsey analysis 40% relative to 2022.



Renewable Energy Growth
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Second-life EV batteries

Second-life EV batteries include those that
— are discarded EVs due to degraded conditions;
— in-warranty replacements;
— road accidents;
— test vehicle batteries; and
— unsold batteries.
These batteries may have energy for other purpose before
being recycled. Use of these batteries in Grid BESS
extend the life cycle of batteries after their first life in EVs
improve the environment
reduce EV ownership cost by selling them for second-life use
reduce the cost of BESS in renewable energy systems

¢
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Using the pack as a storage unit

« Multiple packs connected in series and/or parallel using various
power electronics converters.
- Advantages:
 Easy to obtain
 Easy installation
* Low cost for grouping the system

* Disadvantages:

* Cells inside the pack may be unbalanced —
need to address balancing issues

* No access to cell monitoring

» Access the CAN messages of the onboard BMS
is not possible — a GATEWAY is necessary




Disassemble the pack and obtain
battery cells

- Advantages
e Cells can be grouped based on their SOH
 Bad cells are discarded for recycling
« Maximize the new BESS capacity and longer life span

« Disadvantages
 Labor intensive to disassemble packs
« Damage can happen during disassembling
« Dangerous for the disassembly process itself
« Difficult to test and store the cells
* A new BMS is needed for the new BESS
« May not be cost-effective




SDSU System Deployed at UCSD
Warehouse

B S e

Six Nisan Leaf Gen |
3 packs | |

Total 372 kWh |
nominal B e

Used packs as is

No balance issues



System Design Considerations

- EV battery packs are typically 300-400V

- Single pack connected to inverters will only support 208V/3-
phase grid.
 While the minimum DC-link voltage required for a 480V/3-
phase grid is 750V (= 480 */2 *1.1)
« Option #1: two to three packs needs to be connected to series

« Option #2: Connect each pack or paralleled packs with a DC-DC, and
the output of the DC-DC could be fed to an inverter

Series-Connecte Parallel-Connected

PN

480 V/13.8 kV f H A 480 V/13.8 kV
AC Filter Transformer mer

AC Filter Transfor
3 Three-phase 'NW\:[ 5 o DC/DC Three-phase 'W\:E p Grid
/:0 DCIAC Inverter T owerGnd J ||| || | | converter | [ DCIAC Inverter T Swentl

\ J \ ‘




Proposed switch-capacitor (SC) converter

- Seven-level voltage at
the output terminals

* Three times boosting
factors

 Common ground
features

- Reactive power
supporting

SDSU Source: Transformer-Less Seven-Level Inverter with Journal: Energies 2024, 17(13), 3115;
Triple Boosting Capability and Common Ground https://doi.org/10.3390/en17133115



Operation modes of the proposed topology-
positive half-cycle

Source: Transformer-Less Seven-Level Inverter with Journal: Energies 2024, 17(13), 3115;
Triple Boosting Capability and Common Ground https://doi.org/10.3390/en17133115




Operation modes of the proposed topology-
negative half-cycle

SDSU Source: Transformer-Less Seven-Level Inverter with Journal: Energies 2024, 17(13), 3115;
Triple Boosting Capability and Common Ground https://doi.org/10.3390/en17133115



Peak Current Control (PCC) Strategy
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SDSU Source: Transformer-Less Seven-Level Inverter with Journal: Energies 2024, 17(13), 3115;
Triple Boosting Capability and Common Ground https://doi.org/10.3390/en17133115




Design of passive components
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SDSU Source: Transformer-Less Seven-Level Inverter with Journal: Energies 2024, 17(13), 3115;
Triple Boosting Capability and Common Ground https://doi.org/10.3390/en17133115




Experimental Verifications

Parameter Values of Experimental Analysis

135 Vg G 1 mF v
220 Vi, c, 2.2 mF =E O S
APT75DQ60BG C, 2.2 mF Sk =Y
G3RA0MT12K L 1.5 mH e ® > et ,
TLP250 C 2.2 uF N e — xS / TR
TMS320F28069 Load 62 Q) \ 2 “ e 0000

Experimental Setup

SDSU Source: Transformer-Less Seven-Level Inverter with Journal: Energies 2024, 17(13), 3115;
Triple Boosting Capability and Common Ground https://doi.org/10.3390/en17133115
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Source: Transformer-Less Seven-Level Inverter with
Triple Boosting Capability and Common Ground
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Experimental Verifications- 1 kW output power
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Journal: Energies 2024, 17(13), 3115;
https://doi.org/10.3390/en17133115




Experimental Verifications- 1 kW output power
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SDSU Source: Transformer-Less Seven-Level Inverter with Journal: Energies 2024, 17(13), 3115;

Triple Boosting Capability and Common Ground https://doi.org/10.3390/en17133115



Efficiency Curves- Simulation results
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SDSU Source: Transformer-Less Seven-Level Inverter with Journal: Energies 2024, 17(13), 3115;
Triple Boosting Capability and Common Ground https://doi.org/10.3390/en17133115



Conclusions

* The common ground capability of the proposed inverter eliminates the leakage current in
photovoltaic systems.

» The ability to handle the return current by the proposed inverter makes it possible to feed
non-unity power factor loads or perform voltage control at the point of common coupling
of the power grid.

 The ability to boost voltage with three times the gain means that there is no need for an
additional boost converter, and at input voltages lower than the peak output voltage,
power transfer is performed in a single-stage power processing.

« The proposed inverter can inject power into the output power grid in a wide range of
input voltage.

» There is no need for an additional voltage sensor or a complex control system to control
the voltage of the capacitors in the inverter.

« It offers high efficiency suitable

N/
0‘0



Wireless Charging

Electric safety is of concern:
electric shock due to rain, etc.

Vehicle to WPT

communications
RFID localizer for
positioning

Charge/swap station takes a lot
of space and affect the views

n Smart grid compliant
\//) < utility feed and
modern power

ORNL Wireless Power Transfer Charger electronics

i rree puBLIC
"] ELECTRIC CAR
CHARGING

%

SDSU Collaboration with DOE, DENSO, LG
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Solid State Batteries
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“401050°C High weight percent Si-C anode

increase capacity over 3000mAh/g

350Wh/kg

SUSTAINABLE
.

L

cobalt-free, easily sourceable
materials

FLEXIBLE

flexible solid electrolyte with
extreme low temperature
performance

Proven
Scalability

industry-leading
16Ah, 3.8V

50-layer pouch cells ‘0‘
L

SDSU Collaboration with Dr. Tim Lin, Solid Energies Inc., Funded by California Energy Commision



Cyber Security of Power Systems

* Resilience of power electronics (PE)-dominated power
distribution systems is an increased concern

* There exists physical disturbances and/or cyberattacks

« Use unified, energy space-based modeling framework to identify
disturbances, cyber attacks, and mitigate the risks

. — @
a a2 Energy Space Model | EiPi Bt OF
/‘ see /‘ :-- nerg}EEPaT; - 1___1__1__“___1__ h(xi,..xi) @
. D:I o | . m 1 q- 1- .
= 1 Xi, Xj
o I |
| : ! '
- _ _ . | | 1= fiCe, P
\ = | DC % = = L be J’ii PLQC 1 pu u© t Tt ®
ANEINEE E E[Tac : Cooopeted| L L
Sl S le-- " - T Power
w (D] @) u :_ R Control Law in u; *_ _____ _: Calculator
Energy Space I @
@ i 1 Vabc




Wireless Battery Management Systems

Cell
Monitoring

Fault diagnosis and mitigation
= : Safety & States

Protection Estimation

BMS
______________________ Key Functions

Thermal Charge

: % Management Craritiall
Battery heating/cooling e ontro

Cell
Balancing

Maintain cell consistency
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Joint SOH & parameter estimation
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Raw data selection and pre-treat

Step Two :
Data is uploaded to
Calculation platform;

Calculation for “unit data pieces”

Generate “Parameter-Ah” curves;

Battery cell parameter report;

Step One:
Vehicle data is upload to
manufacture’s database;

Step Four :
Battery Package Analysis

Balance strategy

Balance analysis
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Collaboration with Ford Motor Company



Wireless BMS

Batterv pack DES102
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Elimination of physical connections + Simplified packaging
Natural galvanic 1solation - Enhanced ﬂeXIblhty and I'ellablllty
Reduced weight - Easy to reuse and repurpose

sbsU Collaboration with Dukosi, Solid Energies, Funded by the California Energy Commision & Gotion



Second-Life EV Battery

P m p m .,
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Funded by the California Energy Commission.



Direct Recycling vs. Traditional Recyling
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Project: flying cars/electric airplanes

« Aviation accounts for 2% of CO2 emissions and 3% of all greenhouse
gases globally, and in the long term

« EVTOL seems to be ready; long haul large body electric airplane may
never come to fruition - .

In Collaboration with John Hwang, UCSD, funded by NASA ULI program



We are committed to conduct research to
improve performance, efficiency and safety of
electrlc Vehlcles
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To learn more about WPT

* https://www.youtube.com/c/
WirelessPowerTransfer

Chun T Rim ana Chris Mi
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https://www.youtube.com/c/WirelessPowerTransfer
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