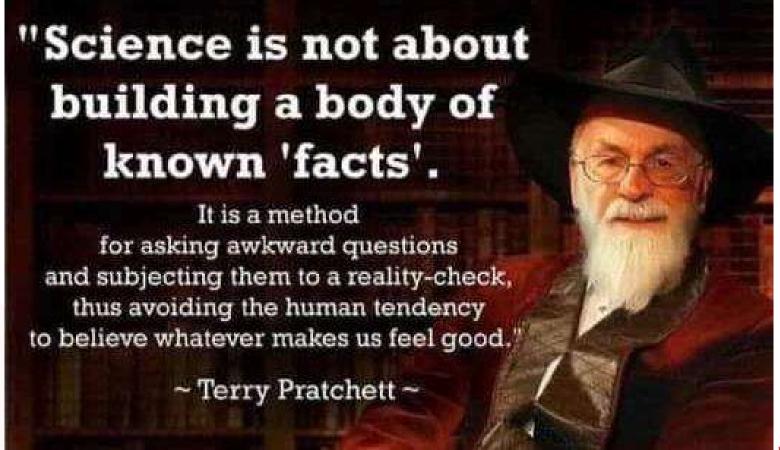


Disclaimer and Credits


- All graphics and information used in this presentation are from various reports and presentations given by NERC all are in the public domain.
- The opinions expressed in this presentation are those of Robert W. Cummings IEEE Life Fellow from 45 years of experience in the electric power industry:
 - 6 years Central Vermont Public Service (System Planning Gen. and Transmission)
 - 8 years Public Service Company of New Mexico (Operations Engineering and Wide Area Planning)
 - 8 years East Central Area Reliability Coordination Agreement (ECAR Manager of Transmission Services)
 - 23 years North American Electric Reliability Corp. (NERC retired in 2020 as Senior Director of Engineering and Reliability Initiatives)
- Vice Chair of IEEE-2800[™]-2022 Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric Power Systems
 - P2800 WG was the recipient of the IEEE PES 2024 IEEE PES Working Group Award for Outstanding Standard or Guide
- Vice Chair of IEEE 2030.11™-2021 Guide for Distributed Energy Resources Management Systems (DERMS) Functional Specification
 - P2030.11 WG was the Recipient of 2023 IEEE PES Award for Outstanding Working Group for Outstanding Standard or Guide
- Vice Chair of IEEE P2030.14 Draft Guide for Virtual Power Plant Functional Specification for Alternate and Multi-Source Generation

Inverter Connected Demand and Resources – Where is the Magic?

2024 Power Electronics and Energy Conversion Workshop Robert W. Cummings IEEE Life Fellow 30 July 2024

Types of Demand and Resources

- Demand Types
 - Static Load traditional resistive load, synchronous motor load
 - Controllable Load inverter-based loads such as variable speed drive motors, controlled LED lighting, etc.
 - Charging Load EV charging, BESS charging, advanced pumped storage pumping!\
 - Quantum increases in power and energy requirements for electrifying everything!!
- Resource Types
 - Uncontrolled Uncontrolled rooftop solar should only be aggregated for providing energy – like run-of-river hydro
 - Controlled DER -- wind, solar, discharging energy storage systems, controllable demand, microgrids, dispatchable fuel cells, small nuclear reactors
 - Traditional dispatchable generation gas turbines are the new load-following backstop to energy-limited renewables

Resource Adequacy in the New World

Traditional Resources Adequacy

- Known installed and operational capacity compared to load projections
 - Is my operational capacity adequate to support the maximum expected loads
 - Based on relatively few generating resources
 - Predicated on known effective forced outage rates of resources and capacity factors of those generators
 - Predictable load patterns
 - Predictable weather patterns
 - Can be done for peak conditions on a day-ahead basis

New Resource Adequacy Analysis

- Variable operating capacity with heavy links to weather and time of day
 - Virtually unknown (or new) forced outage rates
 - Capacity limitations based on time and previous operating conditions (state of charge of batteries)
 - New, highly influential weather conditions
 - Completely new load characteristics and changing load patterns heavily influenced by vehicle charging and behind-the-meter solar and batteries
- Adequacy analysis must be done for every hour of every day, possibly more often
- Availability of wind, solar, battery charge, and fuel for gas-fired resource backup power MUST be considered for ALL hours – shortages of effective capacity to serve load can happen anytime!

Some Basic Facts

- There is no magic box!!! You can't create something from nothing!
 - Daily peak load adequacy assessments are no longer valid! The system is at risk at other times of day!
 - Hourly adequacy analyses are necessary (or maybe more frequent than that)!
 - The energy source behind the resources (the sun, water, wind, battery charge, and natural gas supplies, etc.) must be considered in ALL adequacy analyses.
- Battery Energy Storage produces NO energy! Batteries must be charged by something that actually generates power!
 - If solar of wind resources are charging a battery, they are NOT available to serve other loads!
- The math and physics should NOT lie!
- Controls interactions between IBRs and inverter-connected loads presents extensive dynamic interaction and oscillation possibilities!

Renewable Integration Possibilities and The Math Problem

- What is higher penetration?
- The reported penetration MATH is WRONG:
 - The values is stated typically from 1 SCADA scan cycle 4 seconds!
 - The load value is in the denominator lower loads make the % higher.
 - You must consider all of the timeframes on peak, off peak, shoulder hours
- Displacement of fossil resources synchronous generators
 - Lower operating reserves possible if fast frequency response of IBRs is properly employed
 - Not relying on idling gas turbines to provide primary frequency response
 - Incredible fast frequency response for over and under frequency events
 - Concentrations of server farm loads present a potential for a NEW problem large blocks of load transferring to backup resources appears as a large loss of load
- Presents challenges to system operators due to variability
 - Extremely high ramp rates
 - Often weather dependent
 - Incredible fast frequency response possible of properly applied
- Several mandates for higher penetration

Resource Capability Comparison

- 500 MW capacity of different resources are NOT equal
- Note: Battery Energy Storage Systems are not included they do not generate electricity, just storage and must be charged from other resources

Generation Source	Size (MW)	Capacity Factor	Annual MWh
Coal unit	500	87%	3,810,600
Natural Gas	500	95%	4,161,000
Wind Plant	500	32%	1,401,600
Solar Plant	500	28%	1,226,400

Resource Equal Equality Comparison

 To produce the same amount of annual energy as a coal-fired generator, the other resources would have to have far different capacity ratings (size)

Generation Source	Annual MWh	Size (MW)	Capacity Factor
Coal unit	3,810,600	500	87%
Natural Gas	3,810,600	458	95%
Wind Plant	3,810,600	1,359	32%
Solar Plant	3,810,600	1,554	28%

 Note: Battery Energy Storage Systems are not included – they do not generate electricity, just store energy, and must be charged from other resources

Local Example of Math Problem

- Replace a 500 MW coal-fired generator (~87% available capacity factor)
 with:
 - 500 MW solar plant (with ~28% available capacity factor)
 - Supplement with a 300 MW Battery Energy Storage System (4 hours of storage)
 - Must be charged by something that generates power
 - Net replacement = 200 MW of resources (assuming solar charges the BESS), except after 4 hours of BESS discharging
 - Tear down the old coal unit no recourse for the system operator eliminate any hope of resilience!
- Assume resources are available from neighboring systems
 - Although all of them are doing the same thing

The Changing Grid

Where we are were

- The electric grid of North America is a system of central generating stations with large rotating machines we've had over 100 years to learn how the physics works
- Load consisting of synchronous motors, resistive loads, and incandescent lights

Where we are going

- A system of smaller distributed resources, largely connected through inverters (IBRs)
- A large portion of resources are variable (wind and solar) with much lower capacity factors
- Energy storage systems will be essential to continuous power availability
- Variable speed drive motors connected by power electronics
- Lighting rapidly moving to LEDs far less incandescent, CFL, or mercury vapor lights
- Chargers for everything from phones to electric vehicles
- Quantum increases in power and energy requirements for electrifying everything

So...how do we get from here to there without adversely effecting reliability?

Grid of the Future

Questions

- What will it look like?
- Will we have 100% renewable resources?
- Will all resources be connected through power electronics?
- What will the load look like?
- Will we still have a grid and transmission lines?
- How will microgrids interact?

Transition issues

- Transition to higher penetrations of inverter-coupled renewables may be painful...and not without surprises
- Reductions in inertia and synchronizing torque a more brittle system
- How to dispatch variable resources with lower capacity factors?
- IBR plant and unit interoperability
- Potential for inverter controls interaction what kind of oscillations will there be?
- Cyber Security for IBR controls

New Operational Challenges

- Angular separation problems moving points of concern for standing angles across open breakers
 - Reclosing across wide angles and high voltage differentials
- New variants on Inter-Area Oscillations
 - New, unstudied frequency oscillation modes and shapes
 - Control system interactions with other IBRs, DC Ties, SVCs, etc.
 - Potential for control failures with more IBRs
 - Forced oscillations more prevalent
 - How to detect them
 - How to find their sources
 - How to stop them
- Blackstart capabilities are eroding!
 - Anything developed with IBRs MUST have Grid Forming Capabilities!

New Operational Challenges

- Changes to Oscillation Modes and Mode Shapes new players in the oscillation game
 - Loss of synchronous machines participation
 - New lines (impedance matrix changes) and new injection points change natural oscillation modes
 - Unknown oscillatory behavior of IBRs
 - Not tied to today's natural mode frequencies not related to physics of rotating machinery
 - Outside of expected ranges
 - Potential for IBR control interactions

Questions?

