

1

High-Performance SiC Power Module Development

Yuxiang Chen, H. Alan Mantooth

Department of Electrical Engineering & Computer Science University of Arkansas at Fayetteville

yc041@uark.edu

2024 Power Electronics & Energy Conversion Workshop

July 31, 2024

Silicon Carbide Power Device: Opportunities

Silicon Carbide Power Device: Challenges

UA's Module Progression

4

1.2 kV Double-sided cooled (DSC) SiC-based Half-Bridge Module Development

Module Specifications & Features

Main Specifications

Rating		1.2 kV/400 A (@T _C = 25°C) (DC)
Configuration		Half-Bridge Module
Dimensions		52 × 48.5× 7.7 (mm) (= 19.4 cm ³)
Clearance & Creepage distances	Between terminals	Mini. 3 mm and 4 mm
	To grounded heatsink	Mini. 7.5 mm and 7.5 mm

Technical Features

- Full SiC MOSFET Module, 4 die per switch position
- Cu-Mo metal spacers for chip topside power connections and compact sandwich structure enable low commutation-loop inductance design (Estimated 2.53 nH @ 10 MHz)
- Double-sided cooled structure to achieve better thermal performance
- Combination of SiC device + **Si₃N₄ AMB** Substrate (good CTE matching) for high reliability
- Molding process using epoxy resin as encapsulant to deliver high reliability and high mechanical robustness
- Integrated gate & Kelvin source resistors to reduce high peak currents that may flow in gate loop as well as help to improve dynamic sharing in gate loop
- Embedded temperature sensing enables system-level temperature protection

Typical Static Characteristics of Modules

Typical Dynamic Performance of Modules (1)

Example Waveform of LS: 800 V, 400 A, 5 Ω , 25 $^{\circ}C$

Example Waveform of HS: 800 V, 400 A, 5 Ω , 25 $^{\circ}C$

Typical Dynamic Performance of Modules (2)

For the assembled modules :

With V_{GS}=-2 V/+ 18 V, L_{load}= 30 µH, R_{G-ON (ext)}=R_{G-OFF(ext)}= 5 Ω, the turn-off energy E_{off} and turn-on energy E_{on} show a slight temperature dependency over the entire temperature range

has the potential to utilize chip capabilities better

9

3.3 kV/200 A SiC Half-Bridge Power Module -Pushing Boundaries of Single-Sided Structure with Functional Integration

Functional Integration: Decoupling Caps.

Functional Integration: Gate Drivers

Assembled 3.3 kV/200 A Prototype Modules

Baseline Module

Module with Embedded Caps.

Module with Built-in Gate Driver

Performance Comparison and Demonstration

Embedded decoupling Caps.: Suppress voltage overshoot, difficult to directly measure the current flow through chips

Conclusions

- More research should be extended from WBG device technology to WBG power module packaging development, encompassing all necessary technologies and supply steps along the value chain of WBG power electronics.
- > To **maximize** SiC device performance,
 - Advanced structures: wire bondless, double-sided cooled...
 - Functional integration to push the boundaries of traditional single

sided structures

Thank you !