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Project Goals
Extreme Fast Charging of Electric Vehicles

Achieve bulk charge ina time similar
to refueling conventional vehicles

Peak Power Demand of 350 kW per
charge port

Provide Grid Support Functions

Connect Directly to Medium-Voltage
Feeder

Mitigate Battery Wear-out
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Grid-Side Challenges

Intermittent nature and large-scale XFCS demand — increased
daily demand peaks, feeder overloading, increased power
losses, and power quality issues in host power grids

Overall operational cost minimization

energy arbitrage
reduction of demand charges cost
feeding excess generation from PV to grid
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Multi-Level Energy Management Framework
Timescales from milliseconds to months

* Previous month’s XFCS load
* Previous month’s electricity price
* Previous month’s PV generation

* Long-term forecast of XFCS load
* Long-term forecast of energy price
* Electricity price of PV generation

+ Short-term forecast of XFCS load
+ Short-term forecast of PV gen.
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Monthly Layer (ML): Computes Historical Demand Charge Threshold
* Simulates the MILP model for a whole month using previous month’s data
* Qutputs optimal average power imported from the grid which is used to
get historical demand charge threshold (DCTM")

Upper Scheduling Layer (USL): Optimal Scheduling of Energy Resources

* Mixed integer linear programming (MILP) optimization model
* Bigger time step (15-mins) with longer horizon (24-hours ahead)
* Rolling horizon-based approach considering long-term forecast errors
» Exploitation of energy arbitrage opportunities
* Consideration of demand charge reduction based on realistic utility tariffs
* Comprehensive BESS degradation modeling
Updated
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Lower Dispatch Layer (LDL): Real-time Dispatch of Energy Resources
+ Multi-objective model predictive control (MPC) approach

+ Smaller time step (1-min) with shorter prediction horizon (15-mins ahead)
¢ Tracks the SOCgggand sends latest SOC back to upper layer (USL)
+ Keeps the average grid power imports (Pﬁﬂ;) less than the DCT™

* Send the latest P2, as a result of real-time operation, back to USL

S0C,
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Extreme Fast Charging of EVs
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Active and Reactive Power Management

Q-compensation — to mitigate steady-state voltage violations
Deadband on voltage; enable outside of bounds, disable on change of sign

of Q

Power converter limits affect the active power imports from the

grid — ESS may function as a load-sharing device to provide
supplemental power to satisfy EV demand

Power buffering of the ESS — to buffer the power swings and
mitigate the dynamic impact on the grid’s power quality
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Power Conversion
Goal: Connection to medium-voltage feeder (12.47 kV 30)
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Low-Voltage Prototype

High-Side 4
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AFE Topology Option: Cascaded Brldgeless

Multilevel Rectifier

Replace some full H-bridges
with diode H-bridges

Fewer gate drivers and signals,
so easler control

Limited range of Q; P>0

Limits grid services that can be
provided
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DC-DC Topology Option: LLC
Or CLLLC for bidirectional power flow

Resonant converters are controlled by
frequency

Gain determined by inductances

Propose novel variable transformer to
vary magnetizing & leakage 4

TFT
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Introduce new hybrid 2D model for

leakage inductance; also useful for any
transformer where windings do not fill -
the window
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Virtual Synchronous Generator
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Example Results

Voltage Regulation and Reactive Power Sharin - - :
9 9 9 Frequency Regulation and Active Power Sharing
Droop vs. MADRL Load Change Scenario
L0 Droop Based MADRL
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Summary and Next Steps

Effective integration requires a multi-timescale approach, from
milliseconds to months

A variety of topologies provide a range of capabilities

Cascaded H-bridge plus DAB is the most promising
Medium-voltage challenges remain

Deep reinforcement learning can enhance coordination among
multiple large power converters on the grid

More work is needed to scale up
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