

Additive manufacturing of soft-magnetic alloys for energy applications

SAND2024-09689PE

P R E S E N T E D B Y

Andrew Kustas, Sandia National Laboratories

2024 Power Electronics and Energy Conversion Workshop

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Acknowledgements

Laboratory Directed Research and Development (LDRD) Program

Sandia is a collaborative environment…

Jonathan Pegues, Michael Melia, Erin Barrick, Shaun Whetten, Michael Chandross, Nicolas Argibay, Donald Susan, Kyle Johnson, Dave Keicher, Mark Rodriguez, Daryl Dagel, Joseph Michael, R. Allen Roach, Bonnie McKenzie, Alice Kilgo, Mark Wilson, John Curry

Florida State University/Florida A&M University (HBCU)

■ Brandon Krick

NASA Jet Propulsion Laboratory

■ Samad Firdosy

Metglas, Inc.

Eric Theisen

University of New Mexico

 \blacksquare Eric Lang

University of Tennessee Knoxville

■ Khalid Hattar

National Renewable Energy Laboratory

■ Katherine Jungjohann

Soft Magnetic Alloys Background 3

Excellent soft magnetic properties:

- High saturation induction
- High permeability
- Low coercivity (narrow loops)
- Low core loss (narrow loops)
- Electric motors, transformers, switches, etc.
- Produced conventionally as bar, sheet, plate, via thermomechanical methods

- However -

Poor mechanical properties:

- Result of atomically ordered phase transformations
- Low yield strength
- Low ductility
- High notch sensitivity
- Low fracture toughness

Limits opportunities for loading bearing electromagnetic devices

Coils

Low voltage

Microwave transformer

Soft magnetic

material

4 Why these property tradeoffs?

Increasing Resistivity: Lower Eddy Current Loss

Adapted from G. Herzer, "Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets," The EXECUTION of Magnetics, vol. 26, no. 5, pp. 1397-1402, Sept. 1990, doi: 10.1109/20.104389 B. D. Cullity and C. D. Graham, "Introduction to Magnetic Materials," IEEE Press, 2009, 2nd edition, pg. 117
in IEEE Transacti

Adapted from: Gaoyuan Ouyang, Xi Chen, Yongfeng Liang, Chad Macziewski, Jun Cui, Review of Fe-6.5 wt%Si high silicon steel—A promising soft magnetic

material for sub-kHz application, Journal of Magnetism and Magnetic Materials, Volume 481, 2019, Pages 234-250, https://doi.org/10.1016/j.jmmm.2019.02.089.

Fundamental challenge: structural barriers (i.e., line and area defects, etc.) in alloys increase strength/ductility (and resistivity) but inhibit microscale magnetization processes (decreasing energy efficiency).

 $\bf \Phi$

Conventional Mitigation Strategies Limit Material Performance 5

Modify alloy composition

- 1) Restrict alloying content.
- 2) Addition of ternary, quinary, etc. elements.

Using ideal alloy composition would enable 10,000+ Gigawatt-hour annual energy savings[1,2].

Alternative Manufacturing to Conventional Ingot Metallurgy Methods

30+ years trying advanced manufacturing methods [refs. 3-6] - limited to small material volumes, property tradeoffs remain.

https://www.sputtertargets.net/blog/an-overview-of-magnetron-sputtering.html

[1] DOE, High-Silicon Sheet by Single Stage Shear-Based Processing, 2017.

[2] DOE, Development of New Steel Alloy to Reduce Core Losses in Electric Motors, 2017. [3] R.S. Sundar, S. C. Deevi, Soft magnetic FeCo alloys: alloy development, processing, and properties, 2005.

- *[4] T. Sourmail, Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties, 2005.*
- *[5] G. Ouyang, et al., Review of Fe-6.5wt.%Si high silicon steel – A promising soft magnetic material for sub-5Hz application, 2019*

[6] A. Kustas, et al., Emerging Opportunities in Manufacturing Bulk Soft-Magnetic Alloys for Energy Applications: A Review, 2022

6 Additive Manufacturing Overview

-
- Five independent powder chemistries – combinatorial alloy synthesis.
- *Technical details:*
- Cooling rates: $10^2 10^4$ C/sec
- 2 kW 1064 nm laser
- Spot size/melt pool: $0.4 4$ mm
- Build velocity: $100 3000$ mm/min
- Layer height: $0.2 0.5$ mm
- Build volume: $\sim 150 \text{ mm}^3$

L-PBF

pulsed laser

 \sim 50 um dia

 $15-45$ um

dia powder

laser point

scan speed

 \sim 833 mm/s

50 um layer

thickness,

distance \sim 50 um

匝

- ProX 200 & 300, 350 Flex, Renishaw AM 400, and Xact Metal
- *Representative technical details:*
- Build volumes: $\sim 100 \text{ mm}^3$ to ~ 300 $mm³$
- Cooling rates: $\sim 10^5 10^7$ C/sec
- Feature size: $\sim 100 \,\mathrm{\upmu m}$
- Layer height: \sim 30 50 µm
- Build velocity: ~ 1 m/s
- Complex geometries can be achieve that are impossible for conventional manufacturing.

Tomas F. Babuska, Brandon A. Krick, Donald F. Susan, Andrew B. Kustas, Comparison of powder bed fusion and directed energy deposition for tailoring mechanical properties of traditionally brittle alloys, Manufacturing Letters, Volume 28, 2021,Pages 30-34, https://doi.org/10.1016/j.mfglet.2021.02.003.

⁷ Case study 1: Fe-Co soft magnetic alloys

Equiatomic or near-equiatomic Fe-Co alloys that undergo a γ-FCC $\rightarrow \alpha$ - $BCC \rightarrow \alpha$ 2 (B2) transformations.

- Binary Fe-Co difficult to process.
- Commercialized as ternary alloys, e.g., Fe-Co-2V (Hiperco[®])
- Bar and sheet/strip forms. Hiperco® is a tradename of Carpenter Technologies, Reading, PA.

Excellent magnetic properties:

- Highest saturation magnetization of engineering soft magnetic alloys
	- Lightweighting opportunities
- High curie temperature (> 900 °C)
- High permeability
- Low core loss

Atomic ordering is a big issue!

1700

1500

1300

Š

Liquid

T. Sourmail, Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties, Progress in Materials Science, Volume 50, Issue 7, 2005, Pages 816- 880, https://doi.org/10.1016/j.pmatsci.2005.04.001.

8 Case study 1: achieving strong and ductile Fe-50%Co magnetic alloys

Conventional Hiperco Brittle fracture

AM binary FeCo Ductile fracture

1. Kustas, A. B., et al., Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineering Shaping (LENS), Addit Manu. (2018). 2. Babuska, T.F., et al., Achieving high strength and ductility in traditionally brittle soft magnetic intermetallics via additive manufacturing. Acta Mater. (2019).

 \bigcirc

9 Additive manufacturing enables new pathways for magnetic alloy synthesis

Babuska, T.F., et al., An additive manufacturing design approach to achieving high strength and ductility in traditionally brittle alloys via laser powder bed fusion. Addit. Manu. (2020).

 \bigcirc

10 Magnetic properties

ASTM A773

B-H rings for magnetic properties characterization

Applied Field, H (kA/m)

As-built AM material showed desired high saturation behavior but harder structure-sensitive properties.

Kustas, A. B., et al., Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineering Shaping (LENS), Addit Manu. (2018).

11 Case study II: achieving high silicon electrical steels

Silicon containing α (BCC) iron alloy (0.5 – 3.2 wt%Si – commercial range) that undergoes α -BCC $\rightarrow \alpha_2$ (B₂) and/or α_1 (DO₃) transformations.

- Unworkable with increasing Si content $(> 3.5 \text{ wt} \% \text{Si})$
- Magnetic properties improve with added Si-content until $\sim 6.5 \text{ wt} \% \text{Si}$
	- One commercial sheet product via CVD-siliconizing, JFE Steel Corp expensive and diffusion-limited
- Available in bar, most commonly as sheet/foil for transformers/motors.

12 Comparable properties to conventional electrical steels

Printed bulk Fe-6wt.%Si near-net shape cylinders to extract toroid-shaped specimens for magnetic characterization. Select conditions cracked after annealing (residual stress driven).

Another case where AM is enabling alloy performance, rather than limiting!

Magnetic properties are comparable to conventional electrical steels (low-Si) and CVD-siliconized Fe-6.5wt.%Si sheet (JFE steel corp.).

Concentric (DC)

Cross-hatch (DC)

Concentric (60 Hz)

Cross-hatch (60 Hz)

tional non-oriented Si ste

S 5 wt % Sistee

6.5 wt.% Sister

anted Si st

600

800

Temperature (°C)

1000

1200

a)

2.75

2.50

 2.25

 $E^{2.00}$

 \overline{a} 1.75 $1.5($

> 1.2 1.00 300

250

 $\widehat{\xi}$ 200

 $\begin{array}{c}\n\sum_{i=1}^{n} 150 \\
\sum_{i=1}^{n} 100\n\end{array}$

25000

500

400

Pern 1000 \circ

జ

 Ω

šŔ

Adamczyk, J.M., Birchall, S.E., Rothermel, E.T. et al. Characterization of Fe-6Si Soft Magnetic Alloy Produced by Laser-Directed Energy Deposition Additive Manufacturing. JOM 76, 863–874 (2024). https://doi.org/10.1007/s11837-023-06293-5

13 Case study III: multi-material/functionally graded processing

Why explore functional grading?

 $^{\circ}$

- High-throughput materials discovery
- 2. Spatial control of structure-property relationships
- 3. New property combinations that are otherwise impossible to achieve

Lang, E. et al. (2024) 'Functionally graded magnetic materials: a perspective to advance charged particle optics through compositional engineering', Materials Research Letters, 12(5), pp. 336–345. doi: 10.1080/21663831.2024.2329236.

14 Pairing dissimilar soft magnetic alloys: Hiperco 50A and Hymu-80

Jesse Min-Tze Adamczyk, Erin J. Barrick, Charles J. Pearce, Robert E. Delaney, Nicolas Ury, Robert Peter Dillon, Todd C. Monson, Jay D. Carroll, Donald F. Susan, Nichole R. Valdez, Eric Lang, Khalid Hattar, Ana S. Love, Hyein Choi, Andrew B. Kustas, and Samad A. Firdosy ACS Applied Engineering Materials 2024 2 (4), 818-828 DOI: 10.1021/acsaenm.3c00564

 $\textcircled{\tiny{\textsf{m}}}$

15 Additively enabled spatial control of mechanical and magnetic properties

Jesse Min-Tze Adamczyk, Erin J. Barrick, Charles J. Pearce, Robert E. Delaney, Nicolas Ury, Robert Peter Dillon, Todd C. Monson, Jay D. Carroll, Donald F. Susan, Nichole R. Valdez, Eric Lang, Khalid Hattar, Ana S. Love, Hyein Choi, Andrew B. Kustas, and Samad A. Firdosy ACS Applied Engineering Materials 2024 2 (4), 818-828 DOI: 10.1021/acsaenm.3c00564

 \bigcirc

16 Pairing dissimilar alloys: Hiperco 50A and 304L Stainless Steel

Fracture occurs in the weaker of the two materials: SS304L for as-built, Hiperco 50A for annealed. As-built material showed 20-30% "total composite" strain-to-failure, far exceeding monolithic Hiperco 50A alloy.

> *Samad Firdosy, Nicholas Ury, Andrew B. Kustas, Jay D. Carroll, Priya Pathare, Zachary Casias, Daniel Tung, Don Susan, N. Scott Bobbitt, Michael Chandross, J.P. Borgonia, Vilupanur A. Ravi, R. Peter Dillon, Compositionally graded joints between magnetically dissimilar alloys achieved through directed energy deposition, Scripta Materialia, 2021, 114005, https://doi.org/10.1016/j.scriptamat.2021.114005.*

 0.4

 0.5

Build direction

6mm As Printed - Sample 02

3mm As Printed - Sample 07

Ш

 0.6

-Hiperco-Total-316

 -5

Strain (%

IV

 0.7

 0.8

6mm Heat Treated - Sampl

3mm Heat Treated - Sample 11

7 8 9

-3.3mm As-Printed

-3.3mm Annealed

-6.6mm As-Printed

-6.6mm Annealed

0.9

1.0

17 Future and ongoing work

Metglas-type soft magnetic alloy: nominal Fe-8.6Si-5.6Nb-1.5B-1.3Cu composition (wt.%)

Mass fraction of solid

Conclusions

- 1. Additive Manufacturing is an enabling, rather than limiting, approach for producing soft magnetic alloys
	- a) Especially for alloy compositions that enable higher efficiency devices but are too brittle for conventional thermomechanical processing.
- 2. Non-equilibrium thermal history of AM imparts unusual high strength and ductility mechanical properties
	- a) Especially for FeCo alloys where disorder-order phase transformations dominate properties
- 3. Multi-material additive offers new opportunities for electromagnetic device design
	- a) Pairing dissimilar magnetic or magnetic and non-magnetic materials
	- b) Site specific control of material properties
- 4. Opportunities to use additive processing for unconventional compositions (metglas/nano alloys) in bulk form, as opposed to conventional melt spinning of thin ribbon

akustas@sandia.gov

19 Additively enabled spatial gradations

Build plate

Build plate

Ni-rich FeCo-rich

