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ABSTRACT 

Burnup measurement is an important step in material control and accountancy (MC&A) at 
nuclear reactors.  Comparing to conventional reactors, e.g., light-water reactors (LWRs) that 
use large fuel assemblies, pebble bed reactors (PBRs) post unique challenges in burnup 
measurement.  First, each day there are a few hundred up to one thousand fuel pebbles ejected 
from the reactor core, requiring high throughput in the burnup measurement.  Second, the 
ejected pebbles are extremely radioactive, and if the burnup measurement cannot take such 
hot sources, cooling the pebbles will result in a holdup area that complicates the operation of 
the reactors because of the potential safety and security concerns.  Previous research has 
shown that height of certain photopeaks in gamma spectra, such as 134Cs, 137Cs, 154Eu, etc., can 
be used independently or in combination to infer or predict the level of burnup in the fuel. 
However, our research revealed that the linear regression method requires high-quality gamma 
spectra to give reasonably good results, hence long pebble cooling time and long data 
acquisition time, making this method impractical to PBRs.  In this project, we are developing 
machine learning (ML) method to interpret gamma-ray spectra and predict the burnup values 
of the pebbles.  ML has achieved widespread success and adoption across a few domains that 
require pattern recognition and analysis in varied data types. In this work, three proven ML 
approaches – multilayer perceptron’s (MLPs), convolutional neural networks, and 
transformers – are applied to the task of predicting fuel burnup from measured gamma 
spectra, and a dataset of simulated spectra is compiled for training and validation of the ML 
models.  This report summarizes the research activities and the main achievements in this 
work in FY2021. 
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EXECUTIVE SUMMARY 

Advanced pebble bed reactor (PBR) designs post new challenges in material control and 
accountancy (MC&A) because the fuel materials, distributed in many discrete pebbles, are 
continuously circulated through the reactor core and the refueling path compared to the bulk fuel 
assembly design in conventional reactors, e.g., light water reactors.  In a PBR reactor, there are 
hundreds of thousands of fuel pebbles in the reactor core during the normal operation, and the 
burnup of each pebble is measured when ejected from the core.  Accurate burnup measurement is 
an important step in material control and spent fuel disposition.  The measurement is usually based 
on detection of radiation signatures of fission products accumulated in the pebble fuel over 
irradiation in the core. Previous research has shown that height of certain photopeaks in gamma 
spectra, such as 134Cs, 137Cs, 154Eu, etc., can be used independently or in combination to infer or 
predict the level of burnup in the fuel. However, it remains challenging to measure such complex 
sources due to self-shielding effects, strong radiation background and intervening materials. Another 
operational challenge is the required high throughput of pebbles undergoing burnup measurement, 
which necessitates limited measurement time and thus impacts quality of measured gamma-ray 
spectra. Hence, advanced spectral analysis methods are needed to analyze the noisy gamma spectra 
and predict the burnup values.  

This report demonstrates the feasibility of machine learning (ML) method to interpret gamma-ray 
spectra and predict the burnup values of the pebbles.  ML has achieved widespread success and 
adoption across a few domains that require pattern recognition and analysis in varied data types. In 
this work, three proven ML approaches – multilayer perceptron (MLPs), convolutional neural 
networks, and transformers – are applied to the task of predicting fuel burnup from measured 
gamma spectra. A dataset of simulated spectra is compiled for training and validation of the ML 
models.  This report focuses on the early results of the study, comparing the performance of the 
simplest of these (MLPs) to a standard linear regression. 

The preliminary tests in this work showed that both ML-based methods and the photopeak-based 
linear regression method could achieve high accuracy and minimal statistical errors when the 
gamma-ray spectra contained negligible background radiation caused by short-lived fission products.  
However, such an ideal condition is not achievable in the actual reactor operation.  Under the 
conditions that the PBR designers are considering today, e.g., 2 days or less cooling time and 20-s 
spectrum acquisition time, the gamma spectra from burnup measurement are noisy.  In that case, the 
proposed ML methods outperformed the conventional linear regression method significantly. 

The ultimate goals of this work are to improve MC&A, reduce the operational burden and simplify 
PBR reactor designs by developing a high-performance ML algorithm and identify the optimal 
operational condition for deployment.  It will allow stakeholders, such as regulators, PBR designers, 
and operators, to reach an achievable point in MC&A regulation related to spent fuel coming out of 
the PBR reactors.  The preliminary results reported in this report have demonstrated the promise.  
Further results will be reported in future publications. An area of particular focus in our future work 
will be using the ML models we develop and train to help identify novel spectra features and 
relationships to aid in the interpretation and uncertainty quantification of ML model results. 
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ACRONYMS AND DEFINITIONS 

Abbreviation Definition 

ARS Advanced Reactor Safeguards 

CNN Convolutional neural network 

DOE Department of Energy 

LWR Light-water Reactor 

MAPE Mean Average Percentage Error 

MC&A Material Control and Accountancy 

ML Machine Learning 

MLP Multilayer Perceptron  

R2 Coefficient of Determination (square of the Pearson correlation coefficient) 

IAEA International Atomic Energy Agency 

ID Inventory Difference 
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1. INTRODUCTION 

Advanced pebble bed reactor (PBR) designs post new challenges in material control and 
accountancy (MC&A) because the fuel materials, distributed in many discrete pebbles, are 
continuously circulated through the reactor core and the refueling path compared to the bulk fuel 
assembly design in conventional reactors, e.g., light water reactors.  In pebble bed reactors, the 
reactors are fueled with hundreds of thousands of fuel pebbles.  During the normal operation of a 
PBR, ejected pebbles are returned to the reactor or discharged depending on the fuel burnup and 
physical condition.   

The burnup measurement is usually based on detection of radiation signatures of fission products. 
Years of research has shown that measurements of fission products, such as 134Cs, 137Cs, 154Eu, etc., 
can be applied independently or in combination to infer or predict the level of burnup in the fuel ( 
(Akyurek, Tucker, & Usman, 2014).  A simple criterion for selecting an isotope for burnup 
indication is the exhibition of a strong gamma photopeak. However, it remains challenging to 
measure this complex source due to self-shielding effects, strong radiation background and 
intervening materials. Another challenge is the required high throughput in the burnup 
measurements. Accommodating this throughput necessitates limited measurement time and thus 
impacts efficiency of this measurement. A high-performing spectral analysis method is therefore 
required to identify patterns swiftly and accurately in the time-constrained gamma spectrum 
measurements.  This study uses machine learning (ML) methods to interpret gamma-ray spectra and 
predict the burnup values of the pebbles.  ML has achieved widespread success and adoption across 
numerous domains that require pattern recognition and analysis in varied data types (Butler, 2018) 
(Carleo, 2019). Modern deep learning approaches have supplanted hand-crafted features by learning 
entirely novel, yet meaningful, features and data representations directly from the raw data via deep 
neural network architectures; this has led to state-of-the-art and even superhuman performance on a 
broad range of detection, interpretive, and analytical tasks.   

In this report, we present the details of this research and summarize the main achievements in 
FY2021.  The work includes three parts, development of an efficient workflow for PBR burnup 
simulation based on SERPENT (Leppanen, 2015) and GADRAS (Horne, et al., 2014) software 
packages to collect gamma spectra from a high energy resolution high purity germanium (HPGe) 
detector, development and test of three different ML approaches – multilayer perceptron (MLPs), 
convolutional neural networks (CNNs), and transformers – to the task of predicting fuel burnup 
from measured gamma spectra, and performance comparison of the ML models with the 
photopeak-based linear regression method. 
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2. MODELING AND SIMULATION 

2.1. Overall Modeling and Simulation Workflow 

Modeling and simulation of burnup measurement in this work was done in two steps. The first step 
involved a SERPENT Monte Carlo (MC) simulation (Chersola, et al. 2014) to compute the burnup 
of a modeled pebble in a PBR core. The simulation produced isotopic compositions of a pebble 
after passing through the PBR core axially. Following that, the transport of gamma photons to the 
surface of the pebble was simulated to obtain the photon flux information coming out of the 
pebble.  This second simulation was also performed in SERPENT 2.  After that, the gamma source 
rate at the surface of the pebble and the discrete source lines were written into files as output from 
SERPENT.  The second step of modeling and simulation was to convert these files to a GADRAS 
readable file format (.GAM files) (Rawool-Sullivan, et al. 2012) and feed them into GADRAS to 
produce the gamma-ray spectra in N42 or PCF formats. To expedite the overall process, the burnup 
and photon transport simulation were combined into a single process that could execute on a cluster 
machine with 16 nodes.  Batch processing of the gamma spectra in GADRAS was done on a 
Windows 10 desktop computer. 

2.2. Models of PBR Reactors and Fuel Pebbles 

Because this research was not on designing or optimization of the PBR core, the modeling focused 
on a single pebble instead of a full PBR core. To simplify and streamline the modelling process, a 
lattice model approach was adopted. First, the TRISO particles were modeled to establish a baseline 
for the requirements for a working SERPENT input file that produced reasonable output. The 
TRISO model was then updated to a pebble model to perform the preliminary burnup simulations 
and obtain the gamma source rate at the surface of the pebble. The final model was a lattice of 27 
pebbles in a 3x3x3 configuration from which the centered pebble was used as the reference pebble. 
This lattice model was used to reduce the effect of the reflected boundary condition that was directly 
on the surface of the pebble, which could impact the accuracy of the calculated flux and hence 
estimation of isotope concentrations. With the lattice configuration, this reflected boundary was 
moved to the surface binding the 3x3x3 lattice. Figure 1 below shows the three different stages of 
the model that was used in this work. Table 1 summarizes the main parameters used in modeling the 
fuel pebbles after consulting the PBR fuel and reactor designers. 

 

 
 
 
 
 

 
 
 

 Model of a PBR fuel pebble from a TRISO (Left) to a pebble (Center) 

and a 3x3x3 Lattice (Right) 
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Table 1. Parameters used in modeling the fuel pebble 

Parameter Value 

Uranium Oxy-Carbide (UCO) Density (atoms/b-cm) 6.9924E-02 

Buffer (C) Density (atoms/b-cm) 5.2644E-02 

Pyrolitic Carbon (PyC)/ Silicon Carbide (SiC) Density 
(atoms/b-cm) ~9.5262E-02 

Number of Pebble/TRISO 27/18857 

Pebble/TRISO radius (cm) 3.000/0.0455 

Lattice configuration   3 x 3 x 3 

Power (MWth) 280 

Boundary condition Reflected/Periodic 

Pebble/TRISO PF1 0.5200/0.1137 

Average residence time (days)/Cycles(passes) 522/8 

Cooling time before spectral measurement (days) 0, 0.5, 1, 2, 5, 10 

Data acquisition time (s) 20, 3600 

2.3. Burnup and Photon Transfer Simulations 

As mentioned earlier, two SERPENT simulations were used sequentially to produce photon flux on 
the surface of ejected pebbles. The first simulation was the burnup of a fuel pebble over various 
durations per cycle. These durations per cycle were computed to span across the average residence 
time divided by the number of cycles listed in Table 1.  

Table 2. Duration per cycle and residence time of fuel pebbles in the simulated PBR core 

Duration per cycle (days) Residence time (days) 

60 480 

65 520 

70 560 

 
In this work, 15 different durations per cycle were selected ranging from 30 to 100 days at 5-day 
intervals. This was done to enable the burnup calculation to produce unique data sets. Table 2 above 
shows an example of relationship between the duration per cycle and average residence times 
(assuming 8 cycles). The duration of a cycle was further divided into 10 sub-steps to allow proper 
computation of the isotope concentration over burnup and lower the uncertainty that may result 
from large time steps. To eliminate any correlation that could occur between any two burnup 
calculations over residence time, the duration per sub-step was randomized by 25% across the center 
value, assuming uniform distribution. At the end of each cycle a cooling time was applied to let 

 
1 PF is the Parking Fraction. The TRISO(s) and Pebble(s) have different parking fractions. 
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short-lived isotopes decay. Although typically a pebble bed core would have roughly a cosine axial 
power shape, this work assumed an average constant power distribution over a cycle for simplicity. 
The burnup simulation was performed with a million particles, which reduced the statistical 
uncertainty in the fission reaction rates for neutrons to less than 5% and the uncertainty on the total 
flux to less than 0.1 %. In addition, the initial fuel material was varied in a range of +/-5%, assuming 
uniform distribution, to take into consideration the tolerance of fuel fabrication process. Figure 2 
shows the general structure of the burnup process. 

 

 Illustration of the pebble lattice burnup process 

The second phase of the burnup simulation ran a transport simulation using the isotope 
composition and parameters of each of the cycles and sub step. An outwards current tally was 
imposed on the reference pebble to obtain an estimate of the gamma source rate at the surface of 
the pebble. The energy grid of the imposed tally ranges from 0 MeV to 3 MeV with 512 uniformly 
spaced bins. Ten million particles were simulated for each step in the transport simulation that 
resulted in an uncertainty of less than 15 % in each bin.  

2.4. Generation of Gamma Spectra 

GADRAS is a general-purpose application for the modelling and analysis of radiation detector 
response, primarily gamma spectrometric instruments and neutron detectors based on proportional 
counters. To simulate detector response, a HPGe detector with 95% detection efficiency was 
selected in GADRAS. The detector was calibrated with spectroscopic pairs made up of 60Co, 57Co, 
241Am, 133Ba, 137Cs, 88Y and 228Th before spectra were generated. Also, no simulated background was 

injected into the spectra generated in all datasets. The default deadtime of 10 s was used for all 
spectra dataset generated. The deadtime was corrected before the spectra were fed into ML 
algorithms.  

2.5. Datasets for Development and Test of Machine Learning Method 

Overall, the simulated gamma spectra datasets are characterized by three parameters: residence time, 
cooling time, and acquisition time. Pebble cooling time ranges from 1 hour to 10 days and data 
acquisition time is set as 20 seconds and 3600 seconds. The longest cooling time of 10 days allows 
short-lived isotopes to decay to negligible level while the longest data acquisition time of 3600 
seconds helps reduce the statistical errors, hence that dataset was used as baseline for this study.  On 
the other hand, short cooling time of 1 hour to 2 days and data acquisition time of 20 seconds are 
assumed as more practical settings in the current reactor designs.  The burnup level in each of these 
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datasets ranges from about 2 MWD/kgU to 50 MWD/kgU.  With these parameter settings, a set of 
18,000 gamma spectra were generated through modeling and simulation in FY2021 and are being 
used in the ML algorithm development and test. 

Figure 3 shows examples of simulated spectra. The figure on the left shows the differences between 
10 days and 0.5 days cooling time.  The latter has significant photopeak’s from short-lived fission 
products and a general higher pebble source activity. The figure on the right shows the spectra of 
20-sec and 3600-sec acquisition time from a pebble after 0.5-day cooling time.  It is worth noting 
that short acquisition time (e.g., 20 seconds) and cooling time (e.g., less than 2 days) are preferred 
settings from operational point of view but will create very noisy spectra with many photopeak’s 
from short-lived isotopes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Similar residence and acquisition times (left), Similar residence and 

cooling times (right) 

 

3600 secs acquisition 

20 secs acquisition 

10 days cooling 

0.5 day cooling 



14 

3. ALGORITHMS FOR BURNUP PREDICTION 

3.1. Linear Regression Baselines 

This work was compared against a standard linear regression as a baseline method. Both single-peak 
regression using 137Cs photopeak and multiple-peak regression using 134Cs, 137Cs, and 154Eu 
photopeaks were investigated.  The objective is to determine its effectiveness in predicting burnup 
values for shortened cooling times and detector acquisition times – situations that are preferred 
settings in operation, but introduce noise and quality issues to the detector response. 

3.2. ML Models 

The effectiveness of different machine learning (ML) techniques on improving the prediction 
accuracy and consistency of fuel burnup from measured spectra was explored. This work focused on 
three types of ML models at the beginning of this work, Multilayer Perceptron (MLPs), 
Convolutional Neural Networks (CNN) and Transformers.  

The three ML model types differ in how they extract features from input data. Multilayer perceptron 
(also called fully connected networks, or feedforward neural networks) consists of several linear 
transformations separated by fixed nonlinear activation functions to support capture of nonlinear 
relationships, encoded in the weights of multiple network layers. At each layer, all the elements of 
the intermediate feature representation (starting with the raw spectra values for the first layer) are 
considered together in a single linear mapping to the next layer’s feature representation (after a 
nonlinear activation), so the MLP model architecture extract global features (Ruck, Rogers and 
Kabrisky 1990). CNNs, on the other hand, use a number of convolutional kernels at each layer that 
scan over an entire input sequence, but share weights per layer, and so extract local features [e.g. 
(Kamuda, et al. 2020)]. In addition to nonlinear activation functions, CNNs employ pooling layers to 
iteratively increase the receptive field of the convolutional kernels, and so gather local features to 
build a global feature representation. Whereas the Transformer architecture (Vaswani 2017) uses a 
feature called multi-head attention to create multiple dynamic mappings between all elements of a 
feature vector and incorporates a positional encoding scheme to enable the network to build global 
feature vectors that simultaneously capture contextualized local information as well. This report 
focuses on the performance of MLP models, as our work in evaluating CNN and Transformer 
architectures for this data is ongoing. All models were created using the PyTorch deep learning 
library, and hyperparameters were determined empirically on training data. 
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4. TEST RESULTS 

The predictive accuracy of the baseline regression methods and the trained ML models across eight 
datasets, covering two measurement times (30 secs and 3600 secs), and four cooling times (0.5, 2, 5, 
and 10 days) were evaluated. Baseline and ML models were all trained on 80% of the data for each 
set, and evaluated on the remaining 20% of spectra, to properly measure regression/model 
generalization performance on unseen data. The full raw spectra (4096 channels) were made 
available to the ML models, with differing binning rates allowed as a hyperparameter (along with 
standard model-specific hyperparameter choices). Data preparation consisted of extracting burnup 
levels from the SERPENT simulations and transforming the GADRAS-produced N42 spectra files 
into single datasets suitable for ML model consumption (e.g., CSV files). Burnup levels are in units 
of MWD/kgU. 

4.1. Regression Performance over Reduced Cooling and Acquisition Times 

As anticipated, the performance of a standard linear regression over one or multiple photopeaks to 
predict fuel burnup is significantly affected by reduced cooling time and detector acquisition time. 
Figure 4 shows this effect for linear regression on the 662-keV photopeak of 137Cs. The two-
performance metrics used mean average percentage error (MAPE) and coefficient of determination 
(R2, which is the square of the Pearson correlation coefficient). In predictive regression analysis, R2 is 
the most useful measure of predictive quality, and in particular measures the ability of a regression 
model to track or correlate well with true values, whereas MAPE measures the expected scale of 
prediction errors. Performance metrics are shown for an average of 10 randomly shuffled data 
samples for creating the 80:20 training-testing split. 

As shown in the data plots, for sufficiently long acquisition times (1 hour), a simple linear regression 
can indeed predict fuel burnup reasonably well, with correlation scores over 0.99 for very long 
cooling times (10 days) and prediction errors of 9%. At shortened cooling times (0.5 days), 
correlation remains above 0.97 and the error scaling is approximately 17%. 

Similar results were obtained with multiple-peak linear regression.  For example, Figure 5 shows the 
comparison of MAPE values between multiple-peak linear regression and MLP over different fuel 
cooling time.  The slightly better performance of MLP in this test than in Figure 4 was due to the 
larger dataset used for MLP training. 
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 Predictive performance of standard single-peak linear regression and 

trained MLP model over different fuel cooling time and detector 

acquisition times. MAPE (mean average precision error) is a measure 

of error scale (lower is better), while R2 is a measure of correlation 

(higher is better). 

 

 Predictive performance of standard multiple-peak linear regression 

and trained MLP model over different fuel cooling time. 
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It is noteworthy that, as acquisition time is shortened (20 seconds), the performance of both linear 
regression methods fall dramatically (note the difference in plot scales). Even at a long 10-day 
cooling time, correlation scores fall under 0.85, with errors around 25%, and at 0.5 days of cooling 
time, correlations fall further to 0.65 and errors climb over 55%. Figure 6 shows the degree to which 
predictions from this linear regression agree with the true burnup values. Although predictions 
roughly correlate with the ground truth burnups, the deviations and scale of prediction errors are 
very apparent. For even shorter cooling times (which may be desirable in PBR reactor designs), this 
performance is expected to suffer further. 

 

 Ground truth vs predicted burnup for linear regression and trained 

MLP model on 0.5-day cooling and 20-sec acquisition time (the most 

challenging dataset). A perfect burnup prediction would correspond to 

all points laying along the main diagonal. 

4.2. MLP Burnup Prediction 

In stark contrast to the prior linear regression results, the predictive performance of the MLP 
models that were trained were only minimally affected by changes to fuel cooling and detector 
acquisition time, over the ranges tested. Figure 4 shows predictive performance of one MLP model 
trained over the same datasets as the prior linear regression. The model architecture used for this 
analysis was a 3-layer MLP with hidden layers of size 256 and 32; the standard PyTorch SGD 
(stochastic gradient descent) algorithm was used for training (for 200 epochs), with initial learning 
rate of 1e-3 and a 10x reduction every 50th epoch; momentum was enabled and set to 0.9; dropout 
was disabled. Input spectra were re-binned with a bin width of 32. 

Not only does this MLP model significantly outperform the linear regression in all conditions, but 
the model in fact appears to be performance-saturated for the datasets tested. R2 correlation between 
MLP model predictions and true burnup values are effectively level across different cooling times: 
~0.99 for 1 hour acquisition times and ~0.95 for 20-seconds. Error rates remain around 4% for l 
hour acquisitions and 10% for 20-seconds. In fact, performance in all metrics even appears to 
improve for shorter (i.e., more challenging) cooling times, particularly for the more challenging 20-
second acquisition time datasets. However, this effect is likely an artifact of model parameters not 
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yet being fully optimized; further ML model optimizations should affect additional improvements in 
all conditions, particularly the ‘easier’ datasets. 

It is noteworthy that even in the most challenging measurement conditions, a relatively simple ML 
model architecture achieves exceptional agreement in its predictions with the true burnup values, far 
beyond what is possible with traditional photopeak regression. Figure 5 demonstrates this prediction 
quality on the most challenging measurement condition, showing the much-improved burnup 
prediction quality. 
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5. CONCLUSIONS 

Burnup measurement is critical in MC&A.  ML-based spectral analysis methods were proposed for 
estimation of the burnup of a pebble.  The preliminary tests in this work showed that both ML-
based methods and the photopeak-based linear regression method could achieve high accuracy 
when the gamma-ray spectra contained negligible background radiation caused by short-lived fission 
products and minimal statistical errors.  However, such an ideal condition is not achievable in the 
actual reactor operation.  Under the conditions that the PBR designers are considering today, e.g., 2 
days or less cooling time and 20-s acquisition time, the gamma spectra from burnup measurement 
became noisy.  In that case, the proposed ML methods outperformed the conventional linear 
regression method significantly. 

The ultimate goals of this work are to improve MC&A, reduce the operational burden and simplify 
PBR designs by developing a high-performance ML algorithm and identify the optimal operational 
condition for deployment.  It will allow stakeholders, such as regulators, PBR designers, and 
operators, to reach an achievable point in MC&A regulation related to spent fuel coming out of the 
PBR.  The preliminary results reported in this report have demonstrated the promise.  The datasets 
from the modeling and simulation allow further investigation to optimize the ML algorithm and 
identify the optimal deployment condition.  Further results will be reported in future publications. 
An area of particular focus in our future work will be using the ML models we develop and train to 
help identify novel spectra features and relationships to aid in the interpretation and uncertainty 
quantification of ML model results. 
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