Grid-forming Inverters for Scalable Microgrids

Brian Johnson
Assistant Professor
University of Washington

December 3rd, 2021
Acknowledgements

Contributions from my postdocs and grad students

Minghui Nimesh Rahul Weiqian Soham Pranav Trager

and generous support from DOE & NSF for my research on:

- Grid-forming systems
- Power electronics
- UNIFI Consortium
Renewable Utilization for Various Grid Sizes

- Engineering challenges grow with system size and complexity
- Need scalable, robust, and resilient methods for system operation
A Vision for the Future Grid

Achieving 2 goals simultaneously:
- Break down barriers that limit adoption of renewable energy
- Realize a bottom-up system that works resiliently at any scale
Desired Characteristics of a GFM Inverter

- Can operate in standalone or with many other GFMs
- Proportional power sharing among parallel units
- Works when connected to a stiff grid or weak grid
- Synchronization without a phase-locked-loop
- Accepts PQ bias signals
- Has current limiter to prevent overcurrents
- Can be integrated with dc-side controls
Interoperability

Phase Balancing

Three-phase voltages

Inverter

Loads

Delta

Wye
Phase Balancing

Interoperability

Delta

Wye

Loads

or

A

B

C

Inverter

Inverter

Inverter

Three-phase voltages

Loads

Delta

or

Wye
Approach #1: Dispatchable Virtual Oscillator Control

- A 2nd order nonlinear oscillator
- Newest GFM type in existence

Approach #1: Dispatchable Virtual Oscillator Control

Control equations are given by

\[
\omega = \omega_0 + \frac{\omega_0 \kappa_1}{V^2} \begin{bmatrix} 1 & 0 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} P^* - P \\ Q^* - Q \end{bmatrix},
\]

\[
\dot{V} = \omega_0 \kappa_2 V (V_0^2 - V^2) + \frac{\omega_0 \kappa_1}{V} \begin{bmatrix} 0 & 1 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} P^* - P \\ Q^* - Q \end{bmatrix}.
\]
Illustrating Versatile Performance on Hardware with dVOC Control

$\begin{align*}
&v_1, i_1, v_2, i_2, v_3, i_3 \\
&0 \quad 0 \quad 0 \quad 0
\end{align*}$

Dr. Minghui Lu
Rahul Mallik

$\begin{align*}
&\text{inverters} \\
&\text{loads} \\
&\text{grid}
\end{align*}$

$\begin{align*}
&\equiv \text{ON} \\
&\equiv \text{OFF}
\end{align*}$
Approach #2: Droop Control

- Inspired by machine droop laws
- Oldest GFM method in existence

Approach #2: Droop Control

Control equations are given by

\[
\begin{align*}
\omega &= \omega_0 + \frac{1}{d}\begin{bmatrix} 1 & 0 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} P^* - P_m \\ Q^* - Q_m \end{bmatrix}, \\
V &= V_0 + \frac{1}{dv} \begin{bmatrix} 1 & 0 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} P^* - P_m \\ Q^* - Q_m \end{bmatrix}, \\
\frac{1}{\omega_c} \begin{bmatrix} \dot{P}_m \\ \dot{Q}_m \end{bmatrix} &= - \begin{bmatrix} P_m \\ Q_m \end{bmatrix} + \begin{bmatrix} P \\ Q \end{bmatrix}.
\end{align*}
\]
Approach #3: Virtual Synchronous Machine Control

- Emulate machine dynamics digitally
- Popular due to familiar behavior

Approach #3: Virtual Synchronous Machine Control

Control equations are given by

\[J \dot{\omega} = -\omega + \omega_0 + \frac{d_d}{d_f} (\omega_g - \omega) \]
\[+ \frac{1}{d_f} \begin{bmatrix} 1 & 0 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} P^* - P \\ Q^* - Q_m \end{bmatrix}, \]
\[V = V_0 + \frac{1}{d_v} \begin{bmatrix} 0 & 1 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} P^* - P \\ Q^* - Q_m \end{bmatrix}, \]
\[\frac{1}{\omega_0} \dot{\eta} = \begin{bmatrix} 0 & 1 \end{bmatrix} R(\alpha) R(\delta) T(\omega_0 t) v, \]
\[\frac{1}{\omega_0} \dot{\alpha} = \frac{k_P}{\omega_0} \dot{\eta} + k_i \eta, \]
\[\frac{1}{\omega_c} \dot{Q}_m = -Q_m + Q. \]
A Universal & Unified GFM Model

All 3 GFM types can be boiled down to

\[
\tau_f \frac{d\omega}{dt} = -\omega + \omega_0 + \kappa_d (\omega_g - \omega) \\
+ \kappa_f \begin{bmatrix} 1 & 0 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} P^* - P_m \\ Q^* - Q_m \end{bmatrix},
\]

\[
\tau_v \frac{dV}{dt} = f_v(V) + \kappa_v \begin{bmatrix} 0 & 1 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} p^* - p_m \\ q^* - q_m \end{bmatrix},
\]

\[
\frac{1}{\omega_0} \frac{d\eta}{dt} = \begin{bmatrix} 0 & 1 \end{bmatrix} R(\alpha) R(\delta) T(\omega_0 t) v,
\]

\[
\frac{1}{\omega_0} \frac{d\alpha}{dt} = \frac{k_P}{\omega_0} \dot{\eta} + k_I \eta,
\]

\[
\tau_p \begin{bmatrix} \dot{P}_m \\ \dot{Q}_m \end{bmatrix} = - \begin{bmatrix} P_m \\ Q_m \end{bmatrix} + \begin{bmatrix} P \\ Q \end{bmatrix}.
\]

A Universal & Unified GFM Model

All 3 GFM types can be boiled down to

\[\tau_f \frac{d\omega}{dt} = -\omega + \omega_0 + \kappa_d (\omega_g - \omega) \]
\[+ \kappa_f \begin{bmatrix} 1 & 0 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} P^* - P_m \\ Q^* - Q_m \end{bmatrix}, \]

\[\tau_v \frac{dV}{dt} = f_v(V) + \kappa_v \begin{bmatrix} 0 & 1 \end{bmatrix} R(\psi - \frac{\pi}{2}) \begin{bmatrix} p^* - p_m \\ q^* - q_m \end{bmatrix}, \]

\[\frac{1}{\omega_0} \frac{d\eta}{dt} = \begin{bmatrix} 0 & 1 \end{bmatrix} R(\alpha) R(\delta) T(\omega_0 t) V, \]

\[\frac{1}{\omega_0} \frac{d\alpha}{dt} = \frac{k_p}{\omega_0} \dot{\eta} + k_1 \eta, \]

\[\tau_p \begin{bmatrix} \dot{P}_m \\ \dot{Q}_m \end{bmatrix} = - \begin{bmatrix} P_m \\ Q_m \end{bmatrix} + \begin{bmatrix} P \\ Q \end{bmatrix}. \]

where the parameters are

<table>
<thead>
<tr>
<th>droop</th>
<th>VSM</th>
<th>dVOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_f)</td>
<td>(\tau_v)</td>
<td>(\tau_p)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(\frac{1}{\omega_c})</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>(\frac{1}{d_f})</td>
</tr>
<tr>
<td>0</td>
<td>(\frac{1}{\omega_0})</td>
<td>0</td>
</tr>
</tbody>
</table>

A unified model
Showing Interoperability with a Mix of Control Types

\[P_1^* \rightarrow P_1 \]
\[P_2^* \rightarrow P_2 \]

\[v_1, v_2, v_3 \]
\[i_1, i_2, i_3 \]

\[60 \text{ Hz} \]

\[0 \text{ Hz} \]

dVOC

droop

GFL

loads

\[\equiv \text{ON} \]

\[\equiv \text{OFF} \]
A Single-phase GFM Commercial Product

Features of the inverter building block

- 300 VA single-phase with droop-based GFM controls
- Bidirectional converter can interface PV or batteries

Over 39M+ Enphase inverters shipped for 12 GW of capacity as of September 2021
Can swarms of decentralized single-phase GFMs self-organize into a three-phase system?

Could this system maintain phase balancing when islanded?
Self-balancing Single-phase GFM Hardware Results

Dr. Minghui Lu
Thanks for your attention!

Brian Johnson
brianbj@uw.edu