Energy Storage Demonstration and Analysis: ESS in Grid-Level Setting

Benjamin Schenkman

Singapore
August 2015
ES Grid-Level Projects

Mission: Advance energy storage systems and evaluate cost effectiveness, performance, safety and reliability.

EXAMPLES

- Feasibility Study
 - Cordova, Alaska

- Factory Acceptance Testing, Commissioning and Analysis
 - Puget Sound Energy

- Application and Optimization
 - Base Camp Integration Laboratory

Limited Discussion of system.
Cordova Hydroelectric/Energy Storage Feasibility Study

- **Players**
 - Cordova Electric Cooperative (CEC)
 - US DOE/OE and Sandia National Labs (SNL)
 - Alaska Center for Energy and Power (ACEP)

- **Issue**
 - Expansion of fishing industry has exceeded the supply capability of the 8.5MW hydroelectric plants which supplemental power demand is met with diesel generation.
 - Supplemental power by diesel generation is only needed for minutes
 - Hydro units are run with a 500kW reserve which energy storage can free up and defer diesel generation

- ACEP with SNL and has developed an energy balance model to determine feasibility of an energy storage system installed on the Cordova system
Cordova Electrical System Overview

- Member-owned COOP serving 2,000 customers with summer load peak of 8.4 MW
- Generation Assets
 - Pump Creek: 2 hydro units, 3 MW each
 - Humpback Creek: 2 hydro units, 1.25 MW each
 - Orca Power Plant: 5 diesel units, Total of 9.8 MW
- Distribution system is underground
- SCADA system records over 200 channels of systems data at 1 second intervals with over 10 years worth of data
Results of Energy Balance Model

- Total hours per year within 500kW of spinning reserve while running on hydro power was 215.9167 hours
- Total displaceable diesel hours is 185.4589 hours
- Assuming electricity cost of $0.45/kWh, economic value of energy storage systems is ~$54,640/year
- Power class energy storage system will not have significant economic benefit for Cordova used for diesel displacement
Summary/Conclusions

- Recovering water spilled during times when load demand is below the hydropower capacity has a beneficial impact.
- Initial economic benefit of $750,000/year off-setting thermal loads
- (~14x better return)
Future Tasks

- Establish New Energy Balance Model for Capturing Water Spilled
 - Distributed thermal storage units
 - Electrochemical energy storage

- Develop Dynamic Model for Energy Storage Based On Energy Balance Model
 - Size Specifications
 - Control of single or multiple devices

- Use developed process and model for replication which will be coordinated through a partnership with DOE Indian Affairs
Puget Sound Energy Flow Battery Energy Storage System

- **Players**
 - Puget Sound Energy (PSE)
 - Bonneville Power Administration (BPA)
 - Primus Power
 - DOE/OE and Sandia National Labs (SNL)
 - Pacific Northwest National Laboratory (PNNL)

- **Project Objectives**
 - Install and analyze an innovative 0.5 MW / 1.0 MWh Zinc Bromide flow battery system from Primus Power
 - Develop best practices for commissioning an energy storage system
 - Assess (and demonstrate) the benefits of energy storage on the distribution grid
Currently
- Developing Factory Acceptance Test (FAT) document PSE to serve as the lead entity
- Incorporating Sandia’s lesson learned document for commissioning

Future
- Develop commissioning tests, including
 - Field or Operation Acceptance Test
 - Functional Acceptance Test
- Complete Performance Evaluation
 - Team will monitor installed energy storage system for a period of time to evaluate performance for peak shaving, renewable integration and uninterruptible power supply based on PNNL performance metrics document
 - Change/modify application of energy storage system based on performance evaluation
Energy Storage Incorporated into a Forward Operating Base (FOB)

- **Players**
 - Army Program Manager Force Sustainment Systems (PM FSS)
 - GS Battery
 - Raytheon/Ktech
 - MilSpray
 - Princeton Power Systems
 - US DOE/OE and Sandia National Labs (SNL)

- **Project Objectives**
 - Analyze energy storage’s capability to increase the reliability of the electrical power microgrid at a FOB while decreasing the fossil fuel consumption of the system
FY14 Accomplishments at Energy Storage Test Pad (ESTP)

- RFI issued based on Army Regulations and Sandia Applications
 - Milspray, Lead Acid
 - Princeton Power, Li-Ion
 - Raytheon/Ktech, Zinc Bromide
 - GS Battery, Lead Acid

- Completed Operation Analysis at Sandia’s ESTP
 - Published SAND reports of testing results

- Developed predictive fuel savings model

2% - 5% Fuel Savings
Accomplishments at BCIL

- Completed first round of functional analysis at Base Camp Integration Laboratory (BCIL)
 - Princeton Power and GS Battery energy storage system completed
 - Princeton Power sent ESS to MIT Lincoln Labs (MIT/LL) for further evaluation
Current Project Status and Future Efforts

Currently
- GS Battery HES RESCU unit is being engineered to be hardened to increase capability for grid forming

Future
- Analyze GS Battery HES RESCU unit at BCIL with new grid forming capability
- Combine energy storage system with renewable energy and evaluate
- Scale up existing energy storage systems for larger base camps
Thank you!

Questions?

Benjamin Schenkman

blschen@sandia.gov
Additional ES Demo Contact Information

- Dan Borneo
 - drborne@sandia.gov
- Thomas Merrill
 - Thomas.a.merrill8.civ@mail.mil
- Laura Feinstein
 - Laura.feinstein@pse.com
- Andrew Marshall
 - Andrew.marshall@primuspower.com
- Vilayanur Viswanathan
 - Vilayanur.viswanathan@pnnl.com
- Abbas Akhil
 - abbas@revtx.com
- Marc Mueller-Stoffels
 - mmuellerstoffels@alaska.edu