Federal Oversight of Hydrogen Systems

Austin R. Baird, Brian D. Ehrhart, Austin M. Glover, Chris B. LaFleur

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore, California 94550
ABSTRACT

The application of hydrogen as an energy carrier has been expanding into industrial and transportation sectors enabling sustainable energy resources and providing a zero-emission energy infrastructure. The hydrogen supply infrastructure includes processes from production and storage, to transportation and distribution, to end use. Each portion of the hydrogen supply infrastructure is regulated by international, federal, state, and local entities. Regulations are enforced by entities which provide guidance and updates as necessary. While energy sources such as natural gas are currently regulated via the Code of Federal Regulations and United States Code, there might be some ambiguity as to which regulations are applicable to hydrogen and where regulatory gaps may exist. This report contains an overview of the regulations that apply to hydrogen, and those that may indirectly cover hydrogen as an energy carrier participating in a sustainable zero emission global energy system. As part of this effort, the infrastructure of hydrogen systems and regulation enforcement entities are defined, and a visual map and reference table are developed. This regulatory map and table can be used to identify the boundaries of federal oversight for each component of the hydrogen supply value chain which includes production, storage, distribution, and use.
ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Hydrogen and Fuel Cell Technologies Office (HFTO). This work was reviewed and input was provided by Laura Hill, Mark Richards, Peter Devlin, and Jesse Adams of HFTO as well as the following from the Department of Transportation (DOT) and Department of Homeland Security (DHS): Kevin Leary, Duane Pfund, Matthew Nickels, Sentho White, and Vincent Holohan of the Pipeline and Hazardous Materials Safety Administration (PHMSA), Michael Carter of the Maritime Administration (MARAD), Stephen Bartha and Vincent Chiarito of the Federal Highway Administration (FHWA), Martin Koubek, Shashi Kuppa, and Ian MacIntire of the National Highway Traffic Safety Administration (NHTSA), Melissa Shurland of the Federal Railroad Administration (FRA), and Nicolette Vaughan, Ken Smith, Timothy Meyers, Hillary Sadoff, and Cynthia Znati of the United States Coast Guard (USCG). Additionally, the authors would like to thank Jay Keller for an external peer review of this document, as well as Lennie Klebanoff of Sandia National Laboratories for peer reviewing this document.
CONTENTS

1. Introduction .. 7

2. Hydrogen Supply Value Chain & Federal Regulations .. 9
 2.1. Production & Storage for Distribution of Hydrogen .. 9
 2.1.1. Production Systems ... 9
 2.1.2. Storage Systems ... 9
 2.2. Transportation & Distribution of Hydrogen ... 10
 2.2.1. Transportation by Pipelines .. 10
 2.2.2. Transportation by Road .. 11
 2.2.3. Transportation by Rail .. 11
 2.2.4. Transportation by Waterways ... 12
 2.2.5. Import & Export Terminals .. 12
 2.3. Hydrogen End Use .. 13
 2.3.1. Electricity Production via Fuel Cell and Combustion Systems 13
 2.3.2. Residential, Commercial, and Industrial Heating Systems 13
 2.3.3. Chemical and Industrial Use ... 13
 2.3.4. Blending into Natural Gas Supply Value Chain ... 13
 2.3.5. Auxiliary Power and Alternative Power Supply for Transportation 14
 2.4. Transportation Systems using Hydrogen .. 14
 2.4.1. Use in Road Vehicles .. 14
 2.4.2. Use in Rail .. 15
 2.4.3. Use in Maritime .. 15
 2.4.4. Use in Aviation ... 15

3. Summary & Discussion ... 17

References ... 23

LIST OF FIGURES

Figure 3-1. Hydrogen Regulatory Map ... 17

LIST OF TABLES

Table 3-1. Overview of Regulation and Oversight of Hydrogen Systems 18
ACRONYMS AND DEFINITIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHJ</td>
<td>authority having jurisdiction</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>BSEE</td>
<td>Bureau of Safety and Environmental Enforcement</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CGA</td>
<td>Compressed Gas Association</td>
</tr>
<tr>
<td>DHS</td>
<td>Department of Homeland Security</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>EERE</td>
<td>Office of Energy Efficiency and Renewable Energy</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FE</td>
<td>Office of Fossil Energy</td>
</tr>
<tr>
<td>FERC</td>
<td>Federal Energy Regulatory Commission</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FMCSA</td>
<td>Federal Motor Carrier Safety Administration</td>
</tr>
<tr>
<td>FMVSS</td>
<td>Federal Motor Vehicle Safety Standards</td>
</tr>
<tr>
<td>FRA</td>
<td>Federal Railroad Administration</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transportation Administration</td>
</tr>
<tr>
<td>FTC</td>
<td>Federal Trade Commission</td>
</tr>
<tr>
<td>HMR</td>
<td>Hazardous Materials Regulations</td>
</tr>
<tr>
<td>ICC</td>
<td>International Code Council</td>
</tr>
<tr>
<td>IFC</td>
<td>International Fire Code</td>
</tr>
<tr>
<td>LHG</td>
<td>liquefied hazardous gas</td>
</tr>
<tr>
<td>LNG</td>
<td>liquefied natural gas</td>
</tr>
<tr>
<td>MARAD</td>
<td>Maritime Administration</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>NHTSA</td>
<td>National Highway Traffic Safety Administration</td>
</tr>
<tr>
<td>OCS</td>
<td>outer continental shelf</td>
</tr>
<tr>
<td>OORP</td>
<td>Office of Offshore Regulatory Programs</td>
</tr>
<tr>
<td>OPS</td>
<td>Office of Pipeline Safety</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PHMSA</td>
<td>Pipeline and Hazardous Materials Safety Administration</td>
</tr>
<tr>
<td>USC</td>
<td>United States Code</td>
</tr>
<tr>
<td>USCG</td>
<td>United States Coast Guard</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Hydrogen has been used in chemical and energy industries, particularly as part of oil and natural gas processing; currently, the U.S. produces approximately 10 million metric tons of hydrogen per year [1], and worldwide approximately 70 million metric tons of hydrogen per year are produced [2]. In recent years, hydrogen demand has increased specifically to power fuel cells used in forklifts, light-duty vehicles, and stationary power systems, leading to many new installations of hydrogen systems. Installers of these systems use local building codes, National Fire Protection Association (NFPA) codes, and the International Code Council (ICC) International Fire Code (IFC) for code requirements and engage with the authority having jurisdiction (AHJ) for safety and permitting approvals. The U.S. Department of Energy (DOE) H2@Scale initiative [3] has led to increased interest in new applications for hydrogen systems, including industrial applications, transportation modes, and generally much larger quantities of hydrogen. Larger installations and new transportation modes mean that hydrogen systems are not only subject to local AHJ approval but could be subject to federal oversight as an element of a new sustainable zero emission global energy system. The hydrogen supply value chain includes a variety of steps from production and storage, to transportation and distribution, to end use. The purpose of this effort is to identify the federal regulatory organizations that must be engaged to enable hydrogen to participate in a nationwide sustainable zero emission energy solution.

This effort was inspired and informed by a similar effort by the U.S. Department of Transportation (DOT) Pipeline and Hazardous Materials Safety Administration (PHMSA) regulatory map “Federal Oversight of Liquefied Natural Gas (LNG) Value Chain” [4]. The LNG regulatory map created by DOT PHMSA provides a schematic of all types of LNG facilities and the ways in which LNG can move between them, as well as different location types for these facilities. It then provides markers of different shapes and colors to denote which federal agency has oversight of a particular facility or transportation mode. While technical application requirements are different when comparing hydrogen and natural gas, the regulatory oversight responsibilities might be similar.

Therefore, the purpose of this report is to examine the Code of Federal Regulations (CFR) and United States Code (USC) in order to verify if federal oversight of hydrogen systems would indeed be similar to LNG systems. Specifically, the goal of this effort is to identify where federal oversight begins and ends with respect to various portions of hydrogen supply value chain, including production, storage, transportation, distribution, and use. In so doing, this report is a resource that identifies which federal agencies have oversight of various hydrogen systems and modes of transport, based on current regulations. Additionally, this report identifies, to the extent possible, whether hydrogen is specifically included or excluded from certain activities, installations, or modes of transport based on the current regulations.

This document is not meant to be a compendium of all regulations, codes, and standards that a hydrogen system must follow. Local jurisdictions can and have adopted many different requirements that must be followed for installations under their purview. This document considers only federal regulatory oversight of the hydrogen supply value chain in order to identify which regulators and agencies need to be engaged by designers, integrators, stakeholders, AHJs, and end users for future development of hydrogen technologies. Effort is made to identify the limits of federal oversight, in particular what types of systems would fall under state/local jurisdiction rather than federal, but this document does not identify which regulations, codes, or standards might be adopted by the state or local jurisdiction.
2. HYDROGEN SUPPLY VALUE CHAIN & FEDERAL REGULATIONS

The hydrogen supply value chain includes a variety of processes from production and storage, to transportation and distribution, to end use. Each portion of the hydrogen supply value chain is regulated by various federal entities, which is captured in this section.

A general overview of the hydrogen supply value chain is shown in Section 3 (Figure 3-1). This figure helps visualize how the supply, distribution, and end use of hydrogen is connected. This document is not intended to go into technical details of each technology listed, this type of information can be found in the DOE Hydrogen Program Plan [5].

2.1. Production & Storage for Distribution of Hydrogen

The following subsections include hydrogen production and storage for distribution. This is the first part of the hydrogen supply chain infrastructure.

2.1.1. Production Systems

The regulation of hydrogen production in the United States is governed by 40 CFR Part 98 Subpart P – Hydrogen Production. Hydrogen production facilities produce hydrogen that is sold as a product to other entities, process units that produce hydrogen, and hydrogen production facilities located within another facility that are not under direct control of the facility’s owner. This CFR requires that owners or operators of facilities that produce hydrogen must report emissions from hydrogen production processes and all other source categories at the facility for which methods are defined in the rule [6]. Note that reporting is contingent upon whether the facility meets the requirements of 40 CFR 98.2, which defines source categories and emissions thresholds for the facility. The Environmental Protection Agency (EPA) is the governing body for this regulation.

There are several codes and standards related to hydrogen production that are subject to approval from state or local AHJs which would adopt and enforce these as regulations. Examples of these codes and standards include but are not limited to NFPA 2, NFPA 70, Compressed Gas Association (CGA) H-5.5, American Society of Mechanical Engineers (ASME) B31, and CGA S-1.1-1.3 [7]. State and local jurisdictions may adopt these or other codes and standards, and different jurisdictions may adopt different editions (year published) of these codes and standards. These codes and standards do not fall under federal oversight and are mentioned here only as examples.

2.1.2. Storage Systems

Regulation of a hydrogen storage system is dependent on the purpose of the storage system and whether the hydrogen is stored in gaseous or liquid form. The U.S. Department of Labor Occupational Safety and Health Administration (OSHA) regulates hydrogen storage through 29 CFR Part 1910 Subpart H – Hazardous Materials. This CFR provides the safety requirements of the structural components and operations of gaseous and liquid hydrogen in terms of storage as well as delivery [8]. Note that there are scope limitations defined for hydrogen storage in this CFR, such as minimum quantity, that depend on whether the hydrogen is gaseous or liquefied.

For aircraft and spacecraft launch sites, the DOT Federal Aviation Administration (FAA) regulates hydrogen storage through 14 CFR Part 420, which dictates the separation distance requirements between the storage of liquid hydrogen and any incompatible energetic liquids stored within an intraline distance (the minimum distance permitted between any two explosive hazard facilities in the ownership, possession, or control of one launch site customer) [9]. This regulation stipulates that
each explosive hazard facility must be separated from other hazard facilities, public areas, and public traffic routes in accordance with the minimum separation distance requirement.

There are several codes and standards related to hydrogen storage for distribution that are subject to approval from state or local AHJs which would adopt and enforce these as regulations. One example of such a standard include NFPA 2, which addresses several structural and safety requirements of the hydrogen storage facility.

2.2. Transportation & Distribution of Hydrogen

The next subsections are focused on transportation and distribution of hydrogen as cargo. This includes pipelines, whether repurposed or new installations, as well as transportation via roads, railroads, and waterways. As will be noted in the following sub-sections, the U.S. Department of Transportation (DOT) has oversight over many of these applications through various relevant administrations within DOT.

2.2.1. Transportation by Pipelines

Regulation of hydrogen transported via pipeline infrastructure depends on whether the pipeline is onshore or offshore and if it is interstate or intrastate. 49 CFR Part 192 is the governing law for transportation of natural gas and other gases via pipelines within the limits of the outer continental shelf (OCS), as regulated by PHMSA [10]. The OCS is defined as all submerged lands lying seaward of state coastal waters (3 miles offshore) which are under U.S. jurisdiction [11]. The regulation of natural gas transportation by pipeline is covered by 49 CFR Part 192, and hydrogen would also fall under these regulations as well since other gases are covered by scope and definition.

Currently, interstate and onshore pipelines transporting natural gas are regulated by the Federal Energy Regulatory Commission (FERC) and PHMSA. FERC regulates energy sales and distribution of natural gas through CFR 18 Part 284. Additionally, 18 CFR Part 153 includes regulation of the siting, routing, and overall construction of a natural gas pipeline system. 18 CFR Part 153 also differentiates between pipelines integrated into import and export terminals as discussed in Section 2.2.5. PHMSA also has oversight on design and construction of pipelines. PHMSA regulates pipeline facilities that transport gas in pipelines via 49 CFR Part 192, LNG via 49 CFR Part 193, and hazardous liquids via 49 CFR Part 195. Once the construction of the pipeline system is completed, PHMSA via its Office of Pipeline Safety (OPS) regulates and enforces the pipeline and ensures safety requirements are met. The oversight includes inspections and day-to-day activities [12]. Intrastate pipelines are regulated through either the state agencies or by OPS via an agreement with the states. The agreements between each state and OPS are maintained by PHMSA [13].

Transmission and gathering pipelines in federal waters on the OCS are regulated by either PHMSA OPS or the U.S. Department of the Interior Bureau of Safety and Environmental Enforcement (BSEE) [14]. Pipelines closer to shore which are in state waters are regulated through state agencies or PHMSA OPS [14]. The BSEE Office of Offshore Regulatory Programs (OORP) partner with the U.S. Department of Homeland Security (DHS) and the United States Coast Guard (USCG) as well as other federal and state agencies to manage compliance programs governing oil, gas, and mineral operations on the OCS [15]. While PHMSA OPS regulates through 49 CFR Part 192, BSEE OORP regulates through 43 USC Part 29 [16]. While BSEE OORP and DHS USCG regulations are focused on oil and gas drilling rigs, hydrogen production and transportation from deep-water ports would require regulation. The USCG regulates facilities transferring hazardous materials to as vessel from a facility and discharging from a vessel to a facility through 33 CFR Part 154 [17].
Based on the current landscape of pipeline regulation, pipelines transporting hydrogen across interstate land and water will possibly be subject to the various regulations issued by PHMSA and FERC and intrastate hydrogen pipelines will be subject to similar regulations as well as local state regulations. Offshore regulation of hydrogen transportation is enforced by BSEE and USCG as well as PHMSA which regulates natural and other gases transported via pipeline.

2.2.2. Transportation by Road

The regulation of the transportation of hydrogen over roads as cargo within tanker trucks in the United States is governed by PHMSA through 49 CFR Subchapter C- Hazardous Materials Regulations (HMR). This specifically includes 49 CFR Part 172, 173, and 177. 49 CFR Part 172 lists those materials which PHMSA has designated as hazardous materials for purposes of transportation and prescribes the requirements for shipping papers, package marking, labeling, and transport vehicle placarding applicable to the shipment and transportation of those hazardous materials [18]. T75 and TP5 codes in 49 CFR Part 172 are applicable to portable tanks and fill rate of liquid hydrogen tankers [7]. 49 CFR Part 173 includes specific requirements for the use of insulated MC-338 cargo tanks for cryogenic hydrogen transportation in 49 CFR Part 173.318 and bulk cylinders for compressed, non-cryogenic hydrogen in 49 CFR Part 173.302. Additionally, 49 CFR Part 177 lists loading and unloading practices. 49 CFR Part 178 includes details on the design and approval of shipping containers including cylinders and tanks. 49 CFR Part 180 provides specifications for packaging and containers used for transportation of hazardous materials. The DOT Federal Highway Administration (FHWA) regulates highway safety which includes bridges, tunnels, and other associated elements as part of 23 CFR Part 924 Highway Safety Improvement Program. The DOT Federal Motor Carrier Safety Administration (FMCSA) regulates motor carrier routing (49 CFR Part 356), general motor carrier safety regulations (49 CFR Part 389), and transportation of hazardous materials (49 CFR Part 397). The U.S. Federal Trade Commission (FTC) regulates labeling requirements for alternative fuels via 16 CFR Part 306 which is required when transferring fuel between two entities. Transportation of hydrogen over roads is subject to these regulations by PHMSA, FTC, FMCSA, and FHWA in addition to state and local regulations.

2.2.3. Transportation by Rail

Hazardous materials transported via U.S. rail network are regulated by PHMSA through 49 CFR Part 172 for hazardous materials requirements, 49 CFR Part 173 for shipping requirements, 49 CFR Part 174 for rail transportation, and 49 CFR Part 178 prescribes specifications for packaging and containers used for transportation of hazardous materials. The approval of currently prohibited hazardous materials by rail require either approval by DOT Federal Railroad Administration (FRA) under 49 CFR Part 174.63 or special permit by PHMSA under 49 USC 5117. Special permit by PHMSA does not require separate approval by FRA since the two agencies cooperate when reviewing these applications. This has been applicable to LNG transport by rail up until PHMSA published the “Hazardous Materials: Liquefied Natural Gas by Rail” final rule in 2020 [19] [20]. However, this approval process will not be required for hydrogen transportation, since PHMSA authorizes the manufacture and use of a double-walled, insulated tank car for cryogenic hydrogen, known as a DOT-113A60W. 49 CFR Part 179 and 180 cover the construction and qualification for the DOT-113A60W tank cars. FRA has State Rail Plan Guidance to involve states in railroad network policy, planning, and development [21]. The plan shall address the state’s involvement in rail transportation as posed by the state’s constitution, laws, or regulations, or by implementation of current or proposed federal regulations. The federal government has preempted state railroad safety regulation but offers each state the ability to participate in federal enforcement through FRA.
Transportation of hydrogen via rail is subject to the regulations by PHMSA with input by FRA in addition to state and local regulations.

2.2.4. Transportation by Waterways

Regulation of hydrogen as cargo transported via waterways in vessels is dependent on whether the route is on federal or state waters and what agreement state and local regulators have with federal oversight. Hazardous materials transported via waterways are regulated by PHMSA through 49 CFR Part 172 for hazardous material requirements, 49 CFR Part 173 for shipping requirements, 49 CFR Part 176 for additional requirements for transportation by vessel, 49 CFR Part 178 prescribes specifications for packaging and containers used for transportation of hazardous materials, and 49 CFR Part 180 provides qualification requirements for inspecting and maintaining packages and containers used to transport hazardous materials. 33 CFR Part 156 – Oil and Hazardous Material Transfer Operations is enforced by USCG [22]. The scope of 33 CFR Part 156 applies to transfer of oil or hazardous material on the navigable waters or contiguous zone of the U.S. to or from vessels with a 250-barrel or more capacity. Additionally, USCG regulates facilities transferring hazardous materials back and forth from a vessel to a facility through 33 CFR Part 154 [17]. 46 CFR Part 38 gives USCG the authority to regulate transportation of liquefied or compressed gases which hazardous are primarily the flammability. 46 CFR Subchapter O – Certain Bulk Dangerous Cargoes is also enforced by USCG. 46 CFR Part 150 describes incompatibility of hazardous materials and rules for transporting these materials aboard tanks that are loaded and discharged while on the vessel. 46 CFR Part 151 provides regulations for non-self-propelled ships carrying bulk cargo while 46 CFR Part 153 provides regulations for self-propelled ships carrying bulk cargo. 46 CFR Part 154 provides regulations for self-propelled vessels that contain bulk liquified gases as cargo, cargo residue or vapor.

To summarize, PHMSA regulates transportation of containerized hazardous materials by water through the HMR in cooperation with USCG as well as state/local regulations where applicable.

2.2.5. Import & Export Terminals

Import and export terminals generally involve a pipeline to a facility in which gas can be liquefied for bulk transport by sea. FERC is responsible for authorizing the siting, construction, modification, and operation of near and offshore natural gas import/export facilities through 18 CFR Part 153 [23]. USCG regulates facilities transferring hazardous materials to as vessel from a facility and discharging from a vessel to a facility through 33 CFR Part 154 [17]. While FERC is responsible for the planning and construction of import and export terminals using natural gas, USCG is responsible enforcing regulations to ensure day-to-day safety and security for waterfront facilities [24]. It is expected that these regulations would be modified to include hydrogen as this capability evolves for hydrogen as a participant in the energy infrastructure. If the import or export terminals use pipelines across land or into federal waters, regulations described in Section 2.2.1 would be applicable. PHMSA also regulates pipeline facilities that transport gas via 49 CFR Part 192, LNG via 49 CFR Part 193, and hazardous liquids via 49 CFR Part 195. To the extent that hydrogen transportation could involve the use of deepwater ports, licensing of such facilities might be accomplished through the Deepwater Ports Program implemented jointly by USCG and MARAD. It is likely that some modifications to that program would be needed to expand application to hydrogen.

1 This capacity would need to be specified for hydrogen.
2.3. Hydrogen End Use

Sections 2.3.1 through 2.3.3 identify the regulations associated with the use of hydrogen for electricity production, heating, and chemical/industrial systems. Electricity can be produced via hydrogen powered fuel cells or through combustion to provide power to generators or produce heat. Additionally, hydrogen may be used directly in gas powered residential/commercial appliances as the fuel source based on the appliance specifications. These applications are relevant to pure hydrogen as well as hydrogen and natural gas blends. Section 2.3.4 identifies which federal entities would regulate blending hydrogen into the natural gas supply value chain. Blending can occur either locally or at the city gate which is where the distributing gas utility receives and measures natural gas from transmission lines [25].

2.3.1. Electricity Production via Fuel Cell and Combustion Systems

FERC regulates cogeneration and small power production facilities that include equipment to produce electricity or thermal energy for the grid through 18 CFR Part 292. Note that the specific requirements for classification as a small power production facility or a cogeneration facility are defined in 18 CFR 292.203. 18 CFR Chapter I gives requirements that FERC enforces regarding interstate electric transmission, interconnections, licensing/permits, etc. The DOE Office of Fossil Energy (FE) regulates alternative fuels through 10 CFR Subchapter E – Alternate Fuels. Both current and new power plants fall under these requirements through 10 CFR Parts 503 and 504, respectively. Additionally, state and local regulations play a role in regulating electricity production and transmission. If hydrogen is used in either fuel cells or combustion systems to produce electricity for the grid, they are subject to possible regulation by FERC, FE, as well as any state/local government regulations.

2.3.2. Residential, Commercial, and Industrial Heating Systems

FERC regulates energy sales and distribution of natural gas through 18 CFR Part 284. DOE Office of Energy Efficiency and Renewable Energy (EERE) through 10 CFR Part 431 provides regulation of commercial heaters, hot water boilers, and similar heating appliances. If hydrogen is used in any capacity for heating systems there are possible regulations by FERC, EERE, and state/local government that would apply.

2.3.3. Chemical and Industrial Use

Hydrogen is widely used for chemical and industrial purposes. Examples include using hydrogen for ammonia production, petroleum processing, and other industrial applications due to the unique physical properties of hydrogen [26]. As shown in Section 2.1 the production and storage of hydrogen are regulated by the EPA and OSHA. 29 CFR Part 1910 is enforced by OSHA and includes specific requirements on safety of the structural components and operations of gaseous and liquid hydrogen systems. The EPA covers greenhouse gas emission reporting requirements through 40 CFR Part 98. Subpart P – Hydrogen Production specifically covers facilities that produce hydrogen. If hydrogen is used in another process or application listed in this regulation, such as Subpart G- Ammonia Manufacturing, there are reporting thresholds listed.

2.3.4. Blending into Natural Gas Supply Value Chain

The blend of hydrogen and natural gas is regulated based on where it is used and where hydrogen is added to the natural gas supply value chain. FERC would regulate the import/export of blended fuels per Section 2.2.5 of this report. Once blended hydrogen and natural gas is introduced into the
pipeline system, PHMSA OPS, BSEE, and USCG would regulate the pipeline based on whether it is onshore or offshore per Section 2.2.1. FERC regulates fuel used in combustion systems for power generation per Section 2.3.1, and FERC regulates fuels used for heating systems per Section 2.3.2. EERE regulates heating appliances where this blended fuel may be used as mentioned in Section 2.3.2. FE also regulates alternative fuels through 10 CFR Part 503 and 504. These regulations include using blends stated in Part 503 for new facilities and Part 504 for existing power plants. These requirements are set for facilities required to meet Title VIII of the National Energy Conservation Policy Act (42 USC Chapter 91) which prohibits a power plant from burning natural gas or petroleum as its primary energy source. There is guidance on allowed exemptions to operate using fossil fuels either permanently, temporarily, or due to an emergency. Additionally, blended hydrogen and natural gas used as a fuel source are subject to state/local regulation.

2.3.5. Auxiliary Power and Alternative Power Supply for Transportation

In addition to being used as a fuel source for transportation systems, hydrogen can be used either via combustion or through fuel cells for both auxiliary power systems for aircraft and ships as well as power systems for refrigerated shipping containers. FHWA regulates additional equipment on commercial vehicles to ensure it does not reduce the overall safety of the vehicle through 49 CFR Part 390. Additionally, FRA regulates electrical systems, electronics, generators, protection from hazardous gases from exhaust and batteries, and crashworthiness for locomotives through 49 CFR Part 229. USCG regulates power supply systems on ships through 46 CFR Part 111. FAA prescribes requirements for electrical generating systems as well as auxiliary and backup power supplies under 14 CFR Parts 23, 25, 27, and 29 for different types of aircraft. Auxiliary power and alternative power supplies are also subject to state and local regulations.

2.4. Transportation Systems using Hydrogen

This section addresses the regulation of hydrogen used as a fuel source (energy carrier) for transportation systems. This includes consumer and commercial road vehicles, as well as rail and maritime use. It should be noted that in addition to the requirements listed below, vehicles that use hydrogen in a combustion process are subject to regulation under 40 CFR Subchapter U - Air Pollution Controls through the EPA.

2.4.1. Use in Road Vehicles

The DOT National Highway Traffic Safety Administration (NHTSA) issues Federal Motor Vehicle Safety Standards (FMVSS) that specify performance and safety requirements for new motor vehicles and equipment. U.S. federal law prohibits any person from manufacturing, introducing into interstate commerce, selling, or importing any new motor vehicle or item of motor vehicle equipment unless the vehicle or equipment item conforms to all applicable FMVSS. There are currently 65 FMVSS in 49 CFR 571 [26]. The 200 series of 49 CFR Part 571 covers crashworthiness requirements such as side impact protection, roof crush resistance, and rear impact protection. The 300 series includes safety standards pertaining to compressed natural gas fuel container integrity used for the fuel system as well as requirements for control systems and impact protection. While the FMVSS specify performance requirements for compressed natural gas fuel system and fuel container integrity, there are currently no FMVSS specific to hydrogen fuel systems and hydrogen fuel containers. FHWA regulates highway safety which includes bridges, tunnels, and other associated elements as part of 23 CFR Part 924 – Highway Safety Improvement Program.
PHMSA regulates the transportation of hazardous materials in commerce, including vehicles when the vehicle is transported as cargo, or when the fuel system is removed from the vehicle and transported with fuel remaining in the system. Current hydrogen vehicle fuel systems for use in vehicles are designed and manufactured to different standards from the HMR. Therefore, such cylinders must be transported under the terms of a DOT Special Permit if they are transported outside of the vehicles they power, with hydrogen remaining in the system.

2.4.2. Use in Rail

PHMSA and FRA cooperate to review and approve the use of alternative fuels used to power locomotives; an example of this is the joint work on the LNG Tender Car Standard known as Association of American Railroads M-1004. In one case that is applicable where an alternative fuel is used, FRA approved the Florida East Coast Railroad to run LNG powered locomotives using a fuel tender [20]. FRA regulates locomotive and passenger safety through 49 CFR 229 and 238. Locomotive safety design and crashworthiness requirements are covered under 49 CFR Part 229. Fire safety, emergency response, and other safety requirements for passenger locomotives are covered in 49 CFR Part 238.

FTA provides both financial and technical assistance to local transit systems including light rail, trolleys, and subways. 49 CFR Part 659 provides guidance for rail fixed guideway systems and the oversight of safety. This includes hazard management as identified in 659.31 and safety and security plans and review per 659.25, 659.27, and 659.29. Additionally, 49 CFR Part 674 is given authority via 49 USC 5329(e) for state safety oversight of rail fixed guideway public transportation systems. FTA provides a National Public Transportation Safety Plan for public transportation systems that receive funding through 49 USC Chapter 53. This includes safety performance criteria for all public transportation modes. Also, FRA has State Rail Plan Guidance to involve states in railroad network policy, planning, and development [21]. The plan developed by each state shall address involvement in rail transportation as posed by the state’s constitution, laws, or regulations, or by implementation of current or proposed federal regulations.

2.4.3. Use in Maritime

MARAD is currently supporting and partnering with other federal, state, and local agencies to research hydrogen powered fuel cell designs for maritime applications [27]. 46 CFR Part 24 through 196 gives USCG the authority to regulate the vessel design applications including construction and fire protection requirements [28]. FTA provides a National Public Transportation Safety Plan for public transportation systems that receive funding through 49 USC Chapter 53. This includes safety performance criteria for all public transportation modes including maritime vessels. A combination of USCG and FTA would enforce possible regulations on maritime vessels using hydrogen and hydrogen powered fuel cells as a power source. MARAD, in its role to support the U.S. maritime transportation system and maritime stakeholders, would likely continue to collaborate closely with USCG in the evaluation and development of standards and requirements for vessels operating with fuel cells.

2.4.4. Use in Aviation

Hydrogen fuel systems may be used to power aircraft in some capacity via fuel cells or combustion [29]. FAA regulates aircraft and airworthiness through 14 CFR Parts 23, 25, 26, 27, 29, and 33. The FAA would determine requirements for hydrogen transportation and hydrogen powered aircraft.
This page left blank
3. SUMMARY & DISCUSSION

The hydrogen supply value chain is being regulated by various entities through both CFR and USC. Some of these entities have direct regulations for hazardous materials and gases, which are specifically applicable to hydrogen. Figure 3-1 gives a visual depiction of the regulating entities for the hydrogen supply value chain.

For hydrogen production facilities and storage systems, hydrogen regulations currently exist for emissions reporting and safety. Hydrogen specific regulations also exist for the distribution of hydrogen through tanker trucks, rail, and waterways, as well as hydrogen used as a fuel source for consumer/commercial road vehicles. However, other entities currently regulate similar materials (e.g., natural gas) and hydrogen will fall under that entity’s authority with additional or modified regulations. The use of hydrogen or natural gas/hydrogen blends for electricity production and heating systems are subject to similar oversight as current natural gas systems. Rail, maritime, and aviation transportation using hydrogen as a fuel source will be regulated similar to current natural gas regulations.

Table 3-1 summarizes applicable regulations and regulatory bodies for each category of system along the hydrogen value chain. Table 3-1 also notes which regulations currently have hydrogen directly listed (green), regulations that cover general flammable or otherwise hazardous gases or liquids that should indirectly cover hydrogen (olive green), and regulations that specific to some other material (such as natural gas) that will need to be modified to include hydrogen (orange). Note that this readiness is based on a current assessment by the authors and is subject to regulatory interpretation and changes in the future.
<table>
<thead>
<tr>
<th>System</th>
<th>Oversight</th>
<th>Reference</th>
<th>Summary</th>
<th>H₂ Ready?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>EPA</td>
<td>40 CFR Part 98</td>
<td>Defines source categories and emissions thresholds for a hydrogen production facility</td>
<td>Yes - production of gaseous hydrogen is specifically regulated through reporting thresholds</td>
</tr>
<tr>
<td>Storage</td>
<td>OSHA</td>
<td>29 CFR Part 1910</td>
<td>Dictates the safety of the structural components and operations of gaseous and liquid hydrogen storage and delivery</td>
<td>Yes - specifies requirements for and quantities for gaseous hydrogen storage</td>
</tr>
<tr>
<td></td>
<td>FAA</td>
<td>14 CFR Part 420</td>
<td>Dictates the separation distance requirements for storage of liquid hydrogen and any incompatible energetic liquids</td>
<td>Yes - provides criteria for liquid hydrogen storage separation distances</td>
</tr>
<tr>
<td></td>
<td>BSEE</td>
<td>43 USC Part 29</td>
<td>Manage compliance programs governing oil, gas, and mineral operations on the OCS</td>
<td>No - requirements for facilities and operations specifically for development and production of oil and gas</td>
</tr>
<tr>
<td>Transportation</td>
<td>FERC</td>
<td>18 CFR Part 153</td>
<td>Regulation of the siting, routing, and overall construction of the pipeline system, as well as the distribution and interstate and intrastate sale of natural gas</td>
<td>No - authorizes construction, operation, and modification for import and export facilities for natural gas only</td>
</tr>
<tr>
<td>by Pipeline</td>
<td>PHMSA</td>
<td>49 CFR Part 192</td>
<td>Prescribes minimum safety requirements for pipeline facilities and the transportation of gas, including pipeline facilities and the transportation of gas within the limits of the outer continental shelf</td>
<td>Yes - sets requirements for natural gas transported via pipeline but other flammable gases are included in scope and definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 193</td>
<td>Prescribes safety standards used for LNG facilities that are used to transport gas via pipeline</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 195</td>
<td>Prescribes safety standards for pipeline facilities that transport hazardous liquids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USCG</td>
<td>33 CFR Part 154</td>
<td>Regulations for facilities transferring hazardous materials back and forth from a vessel to a facility</td>
<td>Yes - sets requirements for transferring bulk hazardous materials in a vessel</td>
</tr>
<tr>
<td>Transportation</td>
<td>PHMSA</td>
<td>49 CFR Part 172</td>
<td>Lists and classifies hazardous materials for transportation, and prescribes requirements for papers, markings, labeling, and vehicle placarding</td>
<td></td>
</tr>
<tr>
<td>by Road</td>
<td></td>
<td>49 CFR Part 173</td>
<td>Provides requirements for preparing hazardous materials for shipment, and inspection, testing, and other requirements for transportation containers</td>
<td>Yes - prescribes transportation and packaging requirements for hazardous materials on public highways</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 177</td>
<td>Provides additional requirements when transporting hazardous materials via public highways</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 178</td>
<td>Prescribes specifications for packaging and containers used for transportation of hazardous materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 180</td>
<td>Provides qualification requirements for inspecting and maintaining packages and</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>Oversight</td>
<td>Reference</td>
<td>Summary</td>
<td>H₂ Ready?</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 356</td>
<td>Motor carrier routing requirements</td>
<td>Yes - general safety and routing requirements for hazardous materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 389</td>
<td>General motor carrier safety regulations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 397</td>
<td>Transportation of hazardous materials</td>
<td></td>
</tr>
<tr>
<td>FMCSA</td>
<td></td>
<td>23 CFR Part 924</td>
<td>Regulates highway safety which includes bridges, tunnels, and other associated elements</td>
<td>Yes - nothing is specified for transportation of hazardous materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 CFR Part 306</td>
<td>Describes the certification and posting of automotive fuel ratings in commerce</td>
<td>Yes - specifies labeling requirements including all alternative fuels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 USC 5117</td>
<td>Gives the authority to authorize a variance that is still at the same safety level, special permit is required to use an alternative fuel that does not have a safety standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 172</td>
<td>Lists and classifies hazardous materials for transportation and prescribes the requirements for papers, markings, labeling, and vehicle placarding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 173</td>
<td>Provides requirements for preparing hazardous materials for shipment as well inspection, testing, and other requirements for containers, including usage instructions for DOT-113A60W tank cars</td>
<td>Yes - specifies all requirements for transporting hazardous materials including tank car design, inspection, preparation, and testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 174</td>
<td>Provides additional requirements for transportation of hazardous materials in or on rail cars</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 178</td>
<td>Prescribes specifications for packaging and containers used for transportation of hazardous materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 179</td>
<td>Provides construction requirements for DOT-113A60W tank cars</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 180</td>
<td>Provides qualification requirements for inspecting and maintaining containers used to transport hazardous materials, including DOT-113A60W tank cars</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 172</td>
<td>Lists and classifies hazardous materials for transportation and prescribes the requirements for papers, markings, labeling, and vehicle placarding</td>
<td>Yes - specifies all requirements for transporting hazardous materials including package inspection, preparation, and testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 173</td>
<td>Provides requirements for preparing hazardous materials for shipment, as well inspection, testing, and other requirements for containers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 176</td>
<td>Requirements for transportation by vessel</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>Oversight</td>
<td>Reference</td>
<td>Summary</td>
<td>H₂ Ready?</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Import/Export</td>
<td>USCG</td>
<td>49 CFR Part 178</td>
<td>Prescribes specifications for packaging and containers used for transportation of hazardous materials</td>
<td>Yes - specifies requirements for bulk hazardous materials transported via vessel</td>
</tr>
<tr>
<td>Terminal</td>
<td></td>
<td>49 CFR Part 180</td>
<td>Provides qualification requirements for inspecting and maintaining containers used to transport hazardous materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 CFR Part 154</td>
<td>Regulations for transferring hazardous materials back and forth from a vessel to a facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 CFR Part 156</td>
<td>Transfer of oil or hazardous material on the navigable waters or contiguous zone of the U.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46 CFR Part 38</td>
<td>Requirements for transportation of liquified or compressed flammable gases</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46 CFR Part 150</td>
<td>Describes incompatibility of hazardous materials and rules for transporting these materials aboard tanks that are loaded and discharged while on the vessel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46 CFR Part 151</td>
<td>Regulations for non-self-propelled ships carrying bulk cargo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46 CFR Part 153</td>
<td>Regulations for self-propelled ships carrying bulk cargo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46 CFR Part 154</td>
<td>Regulations for self-propelled vessels that contain bulk liquified gases as cargo, cargo residue, or vapor</td>
<td></td>
</tr>
<tr>
<td>PHMSA</td>
<td>FERC</td>
<td>18 CFR Part 153</td>
<td>Establishes filing requirements to obtain authorization for the siting, construction, operation, place of entry for imports or place of exit for exports</td>
<td>No - requirements specifically for natural gas import and export terminals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 192</td>
<td>Prescribes minimum safety requirements for pipeline facilities and the transportation of gas, including pipeline facilities and the transportation of gas within the limits of the outer continental shelf</td>
<td>Yes - sets requirements for natural gas transported via pipeline but other flammable gases are included in scope and definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 193</td>
<td>Prescribes safety standards used for LNG facilities that are used to transport gas via pipeline</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 195</td>
<td>Prescribes safety standards for pipeline facilities that transport hazardous liquids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USCG</td>
<td>33 CFR Part 154</td>
<td>Regulations for self-propelled vessels that contain bulk liquified gases as cargo, cargo residue, or vapor</td>
<td>Yes - sets requirements for transfer of hazardous liquids and materials on navigable waters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33 CFR Part 156</td>
<td>Transfer of oil or hazardous materials on the navigable waters or contiguous zone of the U.S.</td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>FERC</td>
<td>18 CFR Part 292</td>
<td>Sets requirements for a small power production or cogeneration facility</td>
<td>Yes – fuel cells included in definition of electrical generation equipment</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>Oversight</td>
<td>Reference</td>
<td>Summary</td>
<td>H₂ Ready?</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>FE</td>
<td>10 CFR Part 503</td>
<td>Prohibits any new baseload powerplant without the ability to use coal or another alternative fuel as a primary energy source</td>
<td>Yes – alternative fuels do not explicitly include hydrogen, but note that fuels obtained from alternative fuel sources would be included</td>
</tr>
<tr>
<td></td>
<td>FE</td>
<td>10 CFR Part 504</td>
<td>May prohibit existing powerplants from using petroleum or natural gas as a primary energy source</td>
<td>No – testing requirements for natural gas and oil-fired furnaces, boilers, etc. Definition of gas specific to natural gas and propane.</td>
</tr>
<tr>
<td>Residential & Commercial Heating</td>
<td>FERC</td>
<td>18 CFR Part 284</td>
<td>Provides regulation of energy sales and distribution of natural gas</td>
<td>No – these requirements are specifically for natural gas</td>
</tr>
<tr>
<td></td>
<td>EERE</td>
<td>10 CFR Part 431</td>
<td>Provides regulation of commercial heaters, hot water boilers, and similar heating appliances</td>
<td>No - testing requirements for natural gas and oil-fired furnaces, boilers, etc. Definition of gas specific to natural gas and propane.</td>
</tr>
<tr>
<td>Chemical and Industrial Use</td>
<td>OSHA</td>
<td>29 CFR Part 1910</td>
<td>Dictates the safety of the structural components and operations of gaseous and liquid hydrogen in terms of storage as well as delivery</td>
<td>Yes - specifies requirements for and quantities for gaseous hydrogen storage</td>
</tr>
<tr>
<td></td>
<td>EPA</td>
<td>40 CFR Part 98</td>
<td>Requires reporting of greenhouse gas emission due to combustion or use of products in a process</td>
<td>Yes - production of gaseous hydrogen is specifically regulated through reporting thresholds</td>
</tr>
<tr>
<td>Auxiliary Power and Alternative Power Supply</td>
<td>FHWA</td>
<td>49 CFR Part 390</td>
<td>Regulates additional equipment on commercial vehicles to ensure it does not reduce the overall safety of the vehicle</td>
<td>Yes - requirements are set to ensure that the safety of a commercial vehicles even with additional equipment</td>
</tr>
<tr>
<td></td>
<td>FRA</td>
<td>49 CFR Part 229</td>
<td>Regulations for electrical systems, generators, protection from hazardous gases from exhaust and batteries, and crashworthiness for locomotives</td>
<td>No - Exhaust gases specific to combustion and battery venting are addressed, but not fuel cells</td>
</tr>
<tr>
<td></td>
<td>USCG</td>
<td>46 CFR Part 111</td>
<td>Regulations for power supply systems on ships</td>
<td>No - specifically for boiler, diesel, gas turbine, or steam turbine; does not include alternatives</td>
</tr>
<tr>
<td></td>
<td>FAA</td>
<td>14 CFR Part 23 Subpart E</td>
<td>Requirements for electrical generating systems including auxiliary and backup power for normal category airplanes</td>
<td>Yes – not specific to fuel used</td>
</tr>
<tr>
<td></td>
<td>FAA</td>
<td>14 CFR Part 25 Subpart E</td>
<td>Requirements for electrical generating systems including auxiliary and backup power for transport category airplanes</td>
<td>Yes – not specific to fuel used</td>
</tr>
<tr>
<td></td>
<td>FAA</td>
<td>14 CFR Part 27 Subpart E</td>
<td>Requirements for electrical generating systems including auxiliary and backup power for normal category rotorcraft</td>
<td>Yes – not specific to fuel used</td>
</tr>
<tr>
<td></td>
<td>FAA</td>
<td>14 CFR Part 29 Subpart E</td>
<td>Requirements for electrical generating systems including auxiliary and backup power for transport category rotorcraft</td>
<td>Yes – not specific to fuel used</td>
</tr>
<tr>
<td>Use in Consumer/ Commercial Vehicles</td>
<td>NHTSA</td>
<td>49 CFR 571</td>
<td>Provides Federal Motor Vehicle Safety Standards for motor vehicles and motor vehicle equipment</td>
<td>Yes - requirements are specific for CNG vehicles, but have been used for hydrogen vehicles</td>
</tr>
<tr>
<td></td>
<td>FHWA</td>
<td>23 CFR Part 924</td>
<td>Regulates highway safety which includes bridges, tunnels, and other associated elements</td>
<td>Yes - nothing is specific for transportation of hazardous materials</td>
</tr>
<tr>
<td>System</td>
<td>Oversight</td>
<td>Reference</td>
<td>Summary</td>
<td>H₂ Ready?</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Use in Rail</td>
<td>FRA</td>
<td>49 CFR Part 229</td>
<td>Locomotive safety design and crashworthiness requirements</td>
<td>Yes - includes requirements for alternative designs which would likely be part of alternative fueled locomotives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 238</td>
<td>Safety requirements for passenger locomotives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FTA</td>
<td>49 CFR Part 659</td>
<td>Provides guidance for rail fixed guideway systems and the oversight of safety, including hazard management and safety and security plans and review</td>
<td>Yes - general requirements for safety and security assessments, not fuel-specific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49 CFR Part 674</td>
<td>Mandates state safety oversight of fixed guideway public transportation systems</td>
<td></td>
</tr>
<tr>
<td>Use in Maritime</td>
<td>USCG</td>
<td>46 CFR Parts 24-196</td>
<td>Regulation of vessel construction for both passenger and cargo applications as well as general fuel requirements based on the flash point of the fuel</td>
<td>Yes – these requirements include specific requirements for vessels based on the fuel properties the vessel uses</td>
</tr>
<tr>
<td></td>
<td>FTA</td>
<td>49 USC Chapter 53</td>
<td>Requirements for National Public Transportation Safety Plan for public transportation that receives federal funding</td>
<td>Yes – alternative fuels are noted, but hydrogen is not specifically mentioned</td>
</tr>
<tr>
<td>Use in Aviation</td>
<td>FAA</td>
<td>14 CFR Part 23</td>
<td>Provides requirements and airworthiness standards for normal category airplanes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 CFR Part 25</td>
<td>Provides requirements and airworthiness standards for transport category airplanes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 CFR Part 26</td>
<td>Provides requirements and airworthiness standards for transport category airplanes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 CFR Part 27</td>
<td>Provides requirements and airworthiness standards for normal category rotorcraft</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 CFR Part 29</td>
<td>Provides requirements and airworthiness standards for transport category rotorcraft</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 CFR Part 33</td>
<td>Provides requirements and airworthiness standards for aircraft engines</td>
<td>Yes - there are requirements to analyze flammable gases, but hydrogen is not specifically listed</td>
</tr>
</tbody>
</table>
REFERENCES

This page left blank
DISTRIBUTION

Email—Internal

<table>
<thead>
<tr>
<th>Name</th>
<th>Org.</th>
<th>Sandia Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph Ronevich</td>
<td>08367</td>
<td>jaronev@sandia.gov</td>
</tr>
<tr>
<td>Chris San Marchi</td>
<td>08367</td>
<td>cwsanma@sandia.gov</td>
</tr>
<tr>
<td>Austin Baird</td>
<td>08854</td>
<td>arbaird@sandia.gov</td>
</tr>
<tr>
<td>Brian Ehrhart</td>
<td>08854</td>
<td>bdchrha@sandia.gov</td>
</tr>
<tr>
<td>Chris LaFleur</td>
<td>08854</td>
<td>aclafle@sandia.gov</td>
</tr>
<tr>
<td>Austin Glover</td>
<td>08854</td>
<td>amglove@sandia.gov</td>
</tr>
<tr>
<td>Technical Library</td>
<td>01977</td>
<td>sanddocs@sandia.gov</td>
</tr>
</tbody>
</table>

Email—External (encrypt for OUO)

<table>
<thead>
<tr>
<th>Name</th>
<th>Company Email Address</th>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura Hill</td>
<td>Laura.Hill@ee.doe.gov</td>
<td>U.S. DOE HFTO</td>
</tr>
</tbody>
</table>
This page left blank