A Simplified Performance Assessment (PA) Model for Radioactive Waste Disposal Alternatives

Geoff Freeze and Joon Lee
Sandia National Laboratories
IHLRWM Conference, Albuquerque, NM
April 13, 20011
What a Simplified Performance Assessment Model is NOT

- NOT a complex representation of highly coupled thermal-hydrologic-chemical-mechanical-biological-radiological (THCMBR) processes
- NOT sufficient to represent highly site-specific phenomena and scenarios based on detailed experimental data
- NOT sufficient to support a repository license application
Why Develop a Simplified Performance Assessment Model?

- The U.S. repository program is currently re-considering a number of long-term disposal alternatives
 - Combinations of waste form types
 - used/spent nuclear fuel (UNF)
 - high-level waste (HLW) – glass, ceramic, metal
 - and concepts/settings
 - mined geologic disposal in clay/shale, salt, and granite/hard rock
 - deep borehole disposal
- Need fast and flexible PA capabilities for generic scoping studies of these alternatives
 - Order of magnitude performance estimates are sufficient
- A simplified model isolates/emphasizes key phenomena
 - Can provide more focused insights to system performance
 - Does not rely on overly complex processes and/or couplings that may be difficult to parameterize/quantify
Why Develop a Simplified Performance Assessment Model? (cont.)

- Most long-term radioactive waste disposal PAs are controlled by a few key processes/parameters
 - Duration of radionuclide releases from waste packages (WPs) (fast vs. slow)
 - Waste form (WF) and WP degradation rates, radionuclide solubility
 - Transport processes/residence time in the engineered barrier system (EBS) and in the natural system / geosphere
 - Advection, diffusion, sorption, decay
Generic Disposal System Conceptual Model

- 1-D schematic representation of generic system domains and phenomena common to most disposal system alternatives
 - Based on feature, event, and process (FEP) identification

Table: Generic Disposal System Conceptual Model

<table>
<thead>
<tr>
<th></th>
<th>NEAR FIELD</th>
<th>FAR FIELD</th>
<th>RECEPTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE</td>
<td>ENGINEERED BARRIER SYSTEM (EBS)</td>
<td>GEOSPHERE</td>
<td>BIOSPHERE</td>
</tr>
<tr>
<td>Waste Form</td>
<td>Waste Package</td>
<td>EBS Region (e.g., buffer, backfill, liner, seals)</td>
<td>Host Rock and Other Geologic Units</td>
</tr>
<tr>
<td>[UNF] [HLW]</td>
<td>[BENTONITE BUFFER]</td>
<td>[GRANITE]</td>
<td>[CLAY/SALT]</td>
</tr>
<tr>
<td></td>
<td>[CLAY, SALT BACKFILL]</td>
<td></td>
<td>[SALT]</td>
</tr>
<tr>
<td></td>
<td>[DEEP BOREHOLE SEAL]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram: Simplified THCMBR Processes

- Radionuclide Transport

Table: Simplified THCMBR Processes

<table>
<thead>
<tr>
<th></th>
<th>EBS Environment</th>
<th>Geosphere Environment</th>
<th>Biosphere Environment and Dose Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Term</td>
<td>EBS Transport</td>
<td>Geosphere Transport</td>
<td>Biosphere Transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simplified PA Model – Repository Representation

- **Geometry / configuration**
 - dimensions, number of tunnels, tunnel spacing, number of WPs, WP spacing, orientation (horizontal/vertical)

- **Transport pathways**
 - number of pathways, pathway cross-sectional area, number of WPs per pathway
Simplified PA Model –
Source Representation

- Radionuclide release from waste package to EBS
 - Advective (driven by thermal or gas-generation induced pressure gradients) and/or
 - Diffusive (driven by source concentrations)

- Waste properties (temperature and chemistry dependent)
 - initial radionuclide inventory, waste form geometry and degradation rates, waste package geometry and failure times, radionuclide solubilities

![Diagram of simplified THCMBR processes](image-url)
Simplified PA Model – Near Field Representation

- Radionuclide transport through EBS components (e.g., buffer, backfill) and near field geology (EDZ, durably affected host rock)
 - EBS - advective (e.g., fast paths, crushed rock) and/or diffusive (e.g., bentonite)
 - Host Rock - advective (e.g., granite/EDZ fractures) and/or diffusive (e.g., clay/shale)

- Flow and transport properties in EBS components and near field geology
 - flow path geometry, gradients, permeability, porosity, dispersivity, diffusivity, k_ds, ...
 - parameter values based on generic material properties
Radionuclide transport through far field geology (host rock, adjacent aquifer)
- Host Rock - advective (e.g., granite, salt interbeds) or diffusive (e.g., clay/shale)
- Aquifer - highly advective with possible mixing/dilution

Flow and transport properties in far field geology
- flow path geometry, gradients, permeability, porosity, dispersivity, diffusivity, k_ds, ...
- parameter values based on generic material properties

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>NEAR FIELD</th>
<th>FAR FIELD</th>
<th>RECEPTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINEERED BARRIER SYSTEM (EBS)</td>
<td>EBS Region (e.g., buffer, backfill, liner, seals)</td>
<td>Host Rock and Other Geologic Units</td>
<td>Surface and Biosphere</td>
</tr>
<tr>
<td>Waste Form [UNF] [HLW]</td>
<td>[BENTONITE BUFFER] [CLAY, SALT BACKFILL] [DEEP BOREHOLE SEAL]</td>
<td>[GRANITE] [CLAY/SHALE] [SALT]</td>
<td></td>
</tr>
<tr>
<td>Waste Package</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simplified THCMBR Processes

Radionuclide Transport
- EBS Environment
 - Source Term
 - EBS Transport
- Geosphere Environment
 - Geosphere Transport
- Biosphere Environment and Dose Factors
 - Biosphere Transport
Simplified PA Model – Biosphere Representation

- Groundwater withdrawal from aquifer to receptor

- Biosphere properties
 - withdrawal well pumping rate (radionuclide mass flux to surface)
 - dose conversion factors (based on receptor lifestyle / water usage / consumption rate)
 - parameter values based on IAEA 2003 Example Reference Biosphere (ERB) 1B
Simplified PA Model Results – Clay/Argillite

ANDRA Conceptual Model (ANDRA Dossier 2005: Argile)

Source
- 13,500 UNF WPs
- WP failure time = 10,000 yrs
- WF degradation rate = 2×10^{-5} yr$^{-1}$, (gradual releases over 50,000 yrs)
- Radionuclide specific solubilities
- Diffusive releases from WPs

Near Field
- Bentonite / EDZ argillite (5 m)
- Diffusion-dominated transport
- Radionuclide specific diffusion coefficients and retardation factors

Far Field
- Callovo-Oxfordian (COX) argillite (60 m)
- Diffusion-dominated transport
- Radionuclide specific diffusion coefficients and retardation factors

Biosphere
- Pumping well in the permeable formation overlying the Callovo-Oxfordian discharges to the Saulx Valley
- Pumping rate = 100 L/min
- BDCFs representative of a farming community

ANDRA Dossier 2005, Figure 5.3-11

Sandia National Laboratories
Simplified PA Model Results – Clay/Argillite

- Annual Dose (at Saulx Outlet)

ANDRA Dossier 2005, Figure 5.5-18

Simplified PA Model
Simplified PA Model Results – Clay/Argillite

- ^{129}I Mass Flux from the Callovo-Oxfordian (COX) host rock

ANDRA Dossier 2005, Figure 5.5-2

Simplified PA Model
Simplified PA Model Results – Deep Borehole

Source
- 400 UNF WPs in a 2 km source zone
- WP failure time = 0 yrs
- WF degradation rate = 1×10^{-7} yr$^{-1}$, (min = 1×10^{-8} yr$^{-1}$, max = 1×10^{-6} yr$^{-1}$)
- Advective releases from source zone due to thermal expansion and buoyancy

Near Field
- Bentonite/clay seal zone (1000 m)
- Advective and diffusive transport
- RN specific diffusion coeffs and k_ds

Far Field
- Sediments/aquifer (2000 m)
- Advective transport with sorption

Biosphere
- Pumping well in the far field
- Dilution (pumping) rate = 10,000 m3/yr
- BDCFs representative of IAEA ERB1B
Simplified PA Model Results – Deep Borehole

Mean Annual Dose

UNF high perm., no I sorption

Sensitivity to perm. and I sorption

UNF base permeability, no I sorption
UNF base permeability, seal I sorption
UNF high permeability, no I sorption
UNF high permeability, seal I sorption
Simplified PA Model - Summary

- Fast and flexible PA capabilities for generic scoping studies of disposal system alternatives
 - Utilizes common domains (Source, Near Field, Far Field, Biosphere)
 - Can be applied to a range of WFs (e.g., UNF, HLW) and concepts/settings (e.g., mined clay, salt, or granite, deep borehole)

- Simplified model controlled by a few key processes/parameters
 - Isolates key phenomena
 - temporal evolution of radionuclide releases from source term
 - transport in near field and far field
 - Provides for:
 - focused insights to system performance
 - sensitivity studies

- Simplified framework is modular, complexity in process representation can be added in specific domains as needed