Fourier Coefficients of Aerodynamic Torque Functions for the DOE/Sandia 17-M Vertical Axis Wind Turbine

Gerald M. McNerney

Prepared by Sandia Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789

Printed February 1980

When printing a copy of any digitized SAND Report, you are required to update the markings to current standards.
FOURIER COEFFICIENTS OF AERODYNAMIC
TORQUE FUNCTIONS FOR THE DOE/SANDIA 17-M
VERTICAL AXIS WIND TURBINE

Gerald M. McNerney
Civil Engineering Research Facility
University of New Mexico
Albuquerque, NM 87185

ABSTRACT

The spectral characteristics of the aerodynamic torque on wind
 turbines are important in assessing drivetrain performance. This paper describes a Fast Fourier Transform method to
deduce Fourier coefficients for the periodic torque functions
predicted by aerodynamic theories for Darrieus-type rotors. The method is applied to show spectral characteristics of the
torque on the DOE/Sandia 17-m Darrieus rotor predicted by
the single and multiple streamtube aerodynamic models.

*The work described in this paper was performed for Sandia Laboratories under
Contract No. 13-2322.
CONTENTS

Introduction 7
Analysis 10
 Continuous Case 10
 Discrete Case 13
Results 17
Conclusions 21
References 22
APPENDIX A -- FFT FORTRAN IV Subroutine 23

ILLUSTRATIONS

Figure Page
1 The 17-m VAWT 7
2 Schematic of 17-m VAWT and Drive Train 8
3 Symmetry of Streamtube-Type Aerodynamic Models 9
4 Original Function vs Series Function of Aerodynamic Torque at RW/V = 4 for the 17-m VAWT Two-Bladed Configuration 18
5 Original Function vs Series Function of Aerodynamic Torque at RW/V = 1.5 for the 17-m VAWT Two-Bladed Configuration 18
6 Plot Showing the First Five Coefficients of the Torque Function vs TSR, Two-Bladed Configuration 20
7 Plot Showing the First Five Coefficients of the Torque Function vs TSR, Three-Bladed Configuration 20
8 A Comparison of the Harmonic Content of the Single Streamtube Model and the Multiple Streamtube Model 21
FOURIER COEFFICIENTS OF AERODYNAMIC TORQUE FUNCTIONS FOR THE DOE/SANDIA 17-M VERTICAL AXIS WIND TURBINE*

Introduction

The 17-m vertical-axis wind turbine (VAWT) is a Darrieus-type wind turbine with a height-to-diameter ratio of 1, and troposkien airfoil blades attached to a rotating vertical shaft (Figure 1). Aerodynamic forces acting on the blades produce torque on the center shaft, a torque that then passes through a speed increaser to rotate a high-speed shaft. This high-speed shaft in turn drives an ac induction motor/generator or a synchronous generator to produce power. The main or low-speed shaft for this size turbine will generally rotate at speeds varying from 30 to 55 rpm, while the generator maintains the high-speed or generator shaft at a constant rotational speed.

The generator operates near the synchronous speed of 1800 rpm, controlled by the frequency of the utility line. Power is generated when the generator works to keep the rotational speed from exceeding its operating rpm, while power is consumed if the generator must work to keep the rpm from going below its operational rpm.

Figure 1. The 17-m VAWT

*The curved shape of a skipping rope
The aerodynamic torque on the blades produced by wind varies because the angle of attack of the wind on the turbine changes as the blades rotate as well as because of fluctuations in wind-speed. Since we are concerned here only with the former effect, we will assume that the wind remains constant over a rotational cycle of the turbine.

On the 17-m VAWT, a torque meter is located on the main shaft on a rotating part below the point where the blades meet the shaft (Figure 2). This torque meter is equipped with a device to send an analog signal to a control room, where a minicomputer reads the signal through an analog-to-digital converter. Time series of torque as well as windspeed are created and stored on disk files through this system.

Figure 2. Schematic of 17-m VAWT and Drive Train

The fluctuation of aerodynamic torque caused by the changing angle of attack is called torque ripple. Torque ripple is important in considering not only the quality of power produced but also the fatigue life of various components along the drivetrain.

Aerodynamic models are available that predict the torque produced on the blades' position relative to wind direction. In most common use are streamtube-type models. These models predict, for two-bladed rotors, an aerodynamic torque function which is periodic about 180-deg, and symmetric about 90-deg of rotor rotation. The symmetry results from the assumption in the streamtube models that the induced velocity is the same through the upstream and downstream faces of swept area. As Figure 3 illustrates, since the blade is unskewed and symmetric, and everywhere tangent to rotor swept area, the tangent force experienced at position θ by an element of the blade will be the same as the tangent force experienced by the blade element at position $-\theta$.

Because of this symmetry, the torque function may be expressed as a Fourier cosine series:

\[TQ(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \left(\frac{2\pi n}{P} t \right) \quad (1) \]

where \(P \) = torque period.

Mechanical models may be devised which, when applied to the harmonic components of aerodynamic torque, yield the harmonic components of torque read at the drive train torque sensor. That is, application of the drivetrain models will give

\[A_0 = A_0(a_0), \quad A_1 = A(a_1), \quad A_2 = A_2(a_2) \]

so that the torque at the torque meter will be

\[TQM(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos \left(\frac{2\pi n}{P} t \right) \quad (2) \]

\[\text{The vortex-type aerodynamic models now under development do not assume the induced velocity is uniform throughout the swept area, and therefore for vortex models } TQ(\theta) \neq TQ(-\theta). \]
Unfortunately, aerodynamic torque obtained from the aerodynamic models is in the form of a time series and the Fourier series were not available. Consequently, early results used the first order approximation:

\[TQ(t) = \frac{a_0}{2} + a_1 \cos \left(\frac{2\pi t}{P} \right) \]

in estimating the torque ripple at the torque meter. Therefore, fine comparisons of predicted vs measured values of torque ripple were not available until a method for determining the complete Fourier cosine series had been developed.

The next section explains how Fourier trigonometric series coefficients were determined from the Fourier Transform and describes uses for the Fast Fourier Transform (FFT). The third section presents some results of the method applied to aerodynamic torque time series and compares single and multiple streamtube models. The final section discusses the results and the method in general.

Analysis

Continuous Case

Any aerodynamic torque function is sufficiently well-behaved (e.g., differentiable and absolutely integrable in a finite interval) so that any analytical operations such as forming the Fourier Inverse, or interchanging the order of summation and integration of associated Fourier series, may be freely carried out.

Our primary objective is to find the coefficients \(a_0, a_1, a_2, \ldots, a_n, b_1, b_2, b_3, \ldots \) of the Fourier trigonometric series representation of the aerodynamic torque function, \(TQ(t) \). It is well known that, under the conditions stated above, if \(TQ(t) \) is periodic, with period \(P \), then the series

\[
\frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \left(\frac{2\pi n t}{P} \right) + b_n \sin \left(\frac{2\pi n t}{P} \right) \right]
\]

converges to \(TQ(t) \), where the constants \(a_n \) and \(b_n \) are defined by

\[
a_n = \frac{2}{P} \int_{-P/2}^{P/2} TQ(t) \cos \left(\frac{2\pi n t}{P} \right) dt
\]

\[
b_n = \frac{2}{P} \int_{-P/2}^{P/2} TQ(t) \sin \left(\frac{2\pi n t}{P} \right) dt
\]

\[\text{(3)} \]

As will be shown below, this approximation is quite valid for Darrieus-type rotors operating at tip speed ratios above the aerodynamic stall point.
and
\[b_n = \frac{2}{P} \int_{0}^{P} TQ(t) \sin\left(\frac{2\pi n}{P} t\right) dt. \]

(4)

In view of the Euler relation
\[e^{i\theta} = \cos \theta + i \sin \theta \]

the trigonometric series representation of \(TQ(t) \) may be written in complex form
\[TQ(t) = \sum_{n=-\infty}^{\infty} \sigma_n e^{\frac{2\pi n}{P} it} \]

where
\[\sigma_n = \frac{1}{2} (a_n - ib_n) = \frac{1}{P} \int_{0}^{P} TQ(t) e^{-\frac{2\pi n}{P} t} dt. \]

(6)

If \(TQ(t) \) is an even function of \(t \); that is, if
\[TQ(-t) = TQ(t), \]

then Eq (5) reduces to the cosine series,
\[TQ(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \left(\frac{2\pi n}{P} t\right). \]

When the functional form of \(TQ(t) \) is known, Eqs (3) and (4) may be used to determine the constants \(a_n, b_n \). If the functional form of \(TQ(t) \) is not known, but \(TQ(t) \) is given (for example, as a discrete time series), it may be impractical to use Eq (1) to determine the Fourier coefficients, since a numerical integration scheme requires a large number of data points in a fundamental period of \(TQ(t) \) to achieve reasonable accuracy.

If the Fourier Transform of \(TQ(t) \) can be found, the constants are determinable because the Fourier Transform representation of a function reduces to the Fourier trigonometric series when the function is periodic. To see this, let \(f(t) \) be \(P \) periodic, and consider the Fourier Transform representation of \(f(t) \):
\[f(t) = \int_{-\infty}^{\infty} e^{-2\pi i \lambda t} F(\lambda) \, d\lambda. \]

(7)
where
\[
F(\lambda) = \int_{-\infty}^{\infty} e^{-2\pi i \lambda t} f(t) \, dt .
\] (3)

Since \(f(t) \) is periodic, it admits the representation of Eq (5):
\[
f(t) = \sum_{n=\infty}^{\infty} a_n e^{\frac{2\pi i n t}{P}}
\]

Substituting this into Eq (8), we obtain
\[
F(\lambda) = \int_{-\infty}^{\infty} e^{-2\pi i \lambda t} f(t) \, dt
\]
\[
= \int_{-\infty}^{\infty} e^{-2\pi i \lambda t} \sum_{n=\infty}^{\infty} a_n e^{\frac{2\pi i n t}{P}} \, dt
\]
\[
= \sum_{n=\infty}^{\infty} a_n \int_{-\infty}^{\infty} e^{2\pi i t \left(\frac{n}{P} - \lambda \right)} \, dt
\]
\[
= \sum_{n=\infty}^{\infty} a_n \delta\left(\frac{n}{P} - \lambda \right) ,
\]
where \(\delta\left(\frac{n}{P} - \lambda \right) \) is the so-called delta function that satisfies
\[
\delta\left(\frac{n}{P} - \lambda \right) = 0 \quad \text{for} \quad \lambda \neq \frac{n}{P} ,
\]
and
\[
\int_{I} \delta\left(\frac{n}{P} - \lambda \right) \, d\lambda = 1 \quad \text{for} \quad \frac{n}{P} \in I .
\] (9)

For more information on the delta function, see References 3 and 4.

Thus,
\[
F(\lambda) = \sum_{n=\infty}^{\infty} a_n \delta\left(\frac{n}{P} - \lambda \right) .
\] (10)
and substituting this into Eq (7), we obtain

\[f(t) = \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} a_n \left(\frac{t}{P} - n\right) e^{2\pi i nt} \, dt = \sum_{n=-\infty}^{\infty} a_n e^{2\pi \frac{nt}{P}}. \]

where Eq (9) has been used.

Now, \(F(\lambda) \) is defined by Eq (8) as the Fourier Transform of \(f(t) \), but from Eq (10) we see that the particular form of \(F(\lambda) \) when \(f(t) \) is periodic explicitly involves the complex Fourier coefficients \(a_n \).

The next case to be considered, in which the function under consideration, \(TQ(t) \), is discrete, involves a different analysis, but the result is the same. The Fourier coefficients \(a_n \) may be found by computing the discrete Fourier Transform of \(TQ(t) \).

Discrete Case

Let \(TQ(t) \) be a discrete function defined by

\[TQ(t) = \sum_{k=1}^{N} f_k \chi_{k} \]

where

\[\chi_{k}(t) = \begin{cases} 1 & \text{if } t \in I_k; \\ 0 & \text{if } t \notin I_k; \end{cases} \]

and \(I_k = [t_{k-1}, t_k] \), \(t_k = \frac{kT}{N} = k\Delta t \).

If we let \(TQ(\lambda) \) be the Fourier Transform of \(TQ(t) \), then by definition

\[TQ(\lambda) = \int_{-\infty}^{\infty} TQ(t) e^{-2\pi i \lambda t} \, dt = \sum_{k=1}^{N} f_k \chi_{k} e^{-2\pi \lambda t} \, dt. \]
\[
\begin{align*}
\sum_{k=1}^{N} f_k \int_{t_{k-1}}^{t_k} e^{-2\pi i \lambda t} \, dt &= \sum_{k=1}^{N} \frac{f_k e^{-2\pi i \lambda t_k}}{N} \left(1 - e^{-\frac{2\pi i \lambda T}{N}} \right) \\
&= \left(\frac{-2\pi i \lambda T}{N} \right) \sum_{k=1}^{N} f_k e^{-\frac{2\pi i \lambda t_k}{N}} \\
&= \left(\frac{2\pi i \lambda T}{N} \right) \sum_{k=1}^{N} f_k e^{-\frac{2\pi i \lambda t_k}{N}}.
\end{align*}
\]

(12)

Now, suppose \(TQ(t) \) is periodic over \(M \) increments; that is, \(TQ(t + M) = TQ(t) \), or \(f_{k+M} = f_k \), and in addition that \(\frac{N}{M} = \lambda \), an integer. Then \(tq(\lambda) \) may be simplified as follows:

\[
tq(\lambda) = \left(\frac{2\pi i \lambda T}{N} \right) \sum_{k=1}^{M} f_k e^{-\frac{2\pi i \lambda t_k}{N}} + \sum_{k=1}^{M} f_k e^{-\frac{2\pi i \lambda (M+k)T}{N}} + \cdots + \sum_{k=1}^{M} f_k e^{-\frac{2\pi i \lambda (M(J-1)+k)T}{N}}
\]

\[
= \left(\frac{2\pi i \lambda T}{N} \right) \left(\sum_{k=1}^{M} f_k \sum_{L=0}^{L-1} e^{-\frac{2\pi i \lambda (LM+k)T}{N}} \right)
\]

\[
= \left(\frac{2\pi i \lambda T}{N} \right) \left(\sum_{L=0}^{L-1} e^{-\frac{2\pi i \lambda LM T}{N}} \right) \left(\sum_{k=1}^{M} f_k e^{-\frac{2\pi i \lambda kT}{N}} \right)
\]

(13)

For a discrete function over the interval \(T = N\Delta t \), the sum over \(L \) in Eq (13) may be determined exactly for the \(N \) frequencies \(\lambda_r = \frac{r}{N\Delta t} = \frac{T}{T}, r = 1, 2, \ldots, N \). Two separate cases emerge, first when \(r \) is an integer multiple of \(J \), \(r = H J, H = 1, \ldots, M \), and, second, when \(r \) is not an integer multiple of \(J \). In the first case,

\[
\lambda_r = HJ/T, \text{ so } -\frac{2\pi i \lambda_r LMT}{N} = \frac{-2\pi i LH \cdot J \cdot M}{N}.
\]

But

\[
N = JM, \text{ so,}
\]

\[
-\frac{2\pi i \lambda_r LMT}{M} = -2\pi i LH
\]

and

\[
-\frac{2\pi i \lambda_r LMT}{e} = 1.
\]
thus
\[
\sum_{L=0}^{J-1} e^{-2\pi i \frac{LMT}{N}} = J .
\]

It follows that
\[
tq(\lambda_r) = \frac{2\pi i H}{M} T \sum_{k=1}^{M} f_k e^{\frac{-2\pi i Hk}{M}}.
\]

On the other hand, when \(r \) is not an integer multiple of \(J \), the sum over \(L \) in Eq (13) vanishes.

Proof: \[
-2\pi i \frac{LMT}{N} = -2\pi i \frac{Lr}{J}
\]

So
\[
\sum_{L=0}^{J-1} e^{-2\pi i \frac{TL}{J}} = \sum_{L=0}^{J-1} e^{-2\pi i \frac{Lr}{J}}.
\]

Now, let
\[
\beta = \sum_{L=0}^{J-1} e^{-2\pi i \frac{Lr}{J}}
\]

Then
\[
e^{\frac{-2\pi i r}{J}} \beta = \sum_{L=1}^{J-1} e^{\frac{-2\pi i Lr}{J}} = \beta - 1 + e^{-2\pi i}.
\]

Solve for \(\beta \),
\[
\beta = \frac{1 - e^{-2\pi i r}}{1 - e^{-2\pi i}}.
\]

where division is justified since \(r/J \) is not an integer. But \(e^{-2\pi i} = 1 \), and thus \(\beta = 0 \). Since \(\beta \) is a factor of \(tq(\lambda_r) \) in Eq (13), it follows that \(tq(\lambda_r) = 0 \). We therefore obtain the result that, in the case of a discrete function that is periodic and defined over an integral number of periods, the Fourier Transform is nonzero only for the \(N \) frequencies, \(\lambda_r \), that are multiples of the fundamental frequency.
On the other hand, we may compute the coefficients of the Fourier series directly from the definition:

\[
\alpha_n = \frac{1}{P} \int_0^P TQ(t) e^{-\frac{2\pi in}{P}} dt
\]

\[
= \frac{1}{P} \int_0^T \left[\sum_{k=1}^N f_k \chi_{1k} e^{-\frac{2\pi in}{P}} \right] dt
\]

\[
= \frac{1}{P} \sum_{k=1}^M f_k \int_{k-1}^k e^{-\frac{2\pi in}{P}} dt = \sum_{k=1}^M \frac{f_k}{2\pi i n} \left(e^{-\frac{2\pi in}{P} k} - e^{-\frac{2\pi in}{P} (k-1)} \right)
\]

\[
= \sum_{k=1}^M \frac{f_k}{2\pi i n} e^{-\frac{2\pi in}{k}} \left(1 - e^{-\frac{2\pi in}{M}} \right)
\]

\[
= -\left(\frac{2\pi i n}{2\pi i n} \right) \sum_{k=1}^M \frac{f_k}{2\pi i n} e^{-\frac{2\pi in}{M}} \cdot \frac{-2\pi i n}{M}
\]

where \(P = M\Delta t \). Comparing this to Eq (14), we find

\[
\alpha_n = \frac{tq(h_r)}{T},
\]

when

\(n = H \) and \(r = H \cdot J \).

In actual practice, the FFT is used to compute the Fourier Transform of a discrete function. The FFT method was developed specifically for use with digital equipment. The FFT computational procedure involves some interchanging of matrix elements to reduce the number of calculations required for transforming a discrete function with \(N \) points from order \(N^2 \) to order \(N \). In its simplest form, the FFT requires the transformed function to have \(2^L \) points; that is, \(N = 2^L \) for some integer \(L \). Additionally, the FFT uses \(\Delta t = T/N = 1 \), which must be compensated for at the end of the calculation. If \(\alpha_n \) is to be calculated using the FFT, Eq (16) can be used with \(N = T \) -- that is,

\[
\alpha_n = \frac{tq(h_r)}{N} = \frac{tq(h_r)}{2^L},
\]
where
\[
\lambda_r = \frac{HJ}{N\Delta t} = \frac{HJ}{T}.
\]

For more information on the FFT, see References 4, 5, or 6. A copy of the FFT FORTRAN IV subroutine used is given in Appendix A.

Results

The FFT method for determining Fourier coefficients has been applied to several particular time series of aerodynamic torque. The aerodynamics group at Sandia Laboratories calculated the time series by using the Multiple Streamtube Aerodynamic Model. This model uses conservation of momentum along with the airfoil lift and drag data in an iterative scheme to calculate the force at points along a turbine blade. Reference 7 describes the Multiple Streamtube Model, and Reference 8 describes the calculation particulars. The forces calculated for each point along the blade are then integrated over the blade length and the results added over the number of turbine blades to find the resultant torque at the center shaft as a function of time.

This procedure was repeated for 24 values of blade tipspeed-to-windspeed ratio (RW/V) in increments of one-half starting at RW/V = 1. Turbine rotational speeds of interest are 29.6, 37, 45.5, and 52.5 rpm for two- and three-bladed configurations with struts.

The period of the torque function is one-half rotation for two blades and one-third rotation for three blades. For accuracy and easy use with the FFT, we decided to use 32 increments per torque period. After calculating the torque for one period, we extended the results over 2^5 periods to obtain a periodic time series 2^11 points long.

Similar calculations were made with the single Streamtube Model so that comparisons could be made between the two models.

The aerodynamic torque function is an even function of time because of upwind/downwind blade symmetry. Therefore, the coefficients turned out to be the real coefficients of the Fourier cosine series. Figures 4 and 5 show the graphs of the original functions and the series functions for the two-bladed configuration, with RW/V = 4.0, RW/V = 1.5, and rotational speed at 52.5 rpm. Table 1 lists an example of the coefficients obtained.

A good way to display the results is to plot the first five coefficients of the torque function vs RW/V. This is done for two blades and 52.5 rpm in Figure 6 and three blades in Figure 7. Thus, Figures 6 and 7 clearly show the behavior of the harmonic content of the torque.
Figure 4. Original Function vs Series Function of Aerodynamic Torque at RW/V = 4 for the 17-m VAWT Two-Bladed Configuration

Figure 5. Original Function vs Series Function of Aerodynamic Torque at RW/V = 1.5 for the 17-m VAWT Two-Bladed Configuration
Table 1
An Example of the Coefficients Obtained for the
17-m VAWT Two-Bladed Configuration

<table>
<thead>
<tr>
<th>BLADES</th>
<th>RPM</th>
<th>WIND SPEED</th>
<th>TSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>52.5</td>
<td>25.8 MPH</td>
<td>4.0</td>
</tr>
</tbody>
</table>

THE FIRST 16 COEFFICIENTS, A0, A1, A2, ..., OF THE COSINE SERIES,
A0 + A1*COS(WT) + A2*COS(2WT) + ..., WHERE W IS THE ANGULAR FREQUENCY, ARE:

<table>
<thead>
<tr>
<th>N</th>
<th>FREQUENCY (PER REV)</th>
<th>(HZ)</th>
<th>(RAD/SEC)</th>
<th>NTH FOURIER COEFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.00</td>
<td>.00</td>
<td>13214.531250</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.75</td>
<td>11.00</td>
<td>-12361.179687</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3.50</td>
<td>21.99</td>
<td>-1488.409668</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>5.25</td>
<td>32.99</td>
<td>-151.783295</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>7.00</td>
<td>43.98</td>
<td>-76.424118</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>8.75</td>
<td>54.98</td>
<td>-23.152176</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>10.50</td>
<td>65.97</td>
<td>-28.092754</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>12.25</td>
<td>76.97</td>
<td>25.743965</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>14.00</td>
<td>87.96</td>
<td>-31.312500</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>15.75</td>
<td>98.96</td>
<td>2.233873</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>17.50</td>
<td>109.96</td>
<td>4.724888</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>19.25</td>
<td>120.95</td>
<td>-3.912411</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>21.00</td>
<td>131.95</td>
<td>-6.950874</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>22.75</td>
<td>142.94</td>
<td>-2.941116</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>24.50</td>
<td>153.94</td>
<td>-3.972534</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>26.25</td>
<td>164.93</td>
<td>.484375</td>
</tr>
</tbody>
</table>

PLOTS?
Figure 6. Plot Showing the First Five Coefficients of the Torque Function vs TSR, Two-Bladed Configuration

Figure 7. Plot Showing the First Five Coefficients of the Torque Function vs TSR, Three-Bladed Configuration
Finally, the coefficients of the Fourier cosine series were computed for the Single Streamtube Model and plotted in Figure 8 as a function of TSR along with the corresponding coefficients of the Multiple Streamtube Model so that the harmonic content of the two models can be compared.

![Figure 8. A Comparison of the Harmonic Content of the Single Streamtube Model and the Multiple Streamtube Model](image)

Conclusions

The FFT method for computing Fourier coefficients is satisfactory for aerodynamic torque applications. The agreement between the aerodynamic torque function, \(TQ(t) \), and the series representation,

\[
\frac{1}{2} a_0 + \sum_{n=1}^{15} a_n \cos (2\pi W_n),
\]

is quite good. In particular, for 32 points in the fundamental period, and \(2^6 \) periods, the FFT method produced coefficients that were acceptable in all cases.

One disadvantage of the FFT method described here is that the FFT was limited to data sets with \(2^n \) points in the fundamental period. This limitation is not absolute since more general forms
of the FFT are available, but the FFT algorithms based on 2^n are the simplest and most easily available. The disadvantage became clear in the three-bladed case when the forces were to be added over the three blades.

Overall, the FFT method is recommended for use in similar situations.

References

APPENDIX A

FFT FORTRAN IV Subroutine

```
0001 FTN4,L
0002 SUBROUTINE FFT(FR,FI,K)
0003 C FFT FAST FOURIER TRANSFORMS COMPLEX
0004 C DATA IN FR-REAL) AND FI(IMAGINARY)
0005 C ARRAYS. THE NUMBER OF POINTS TO BE
0006 C TRANSFORMED MUST BE N=2**K.
0007 C
0008 C
0009 DIMENSION FR(1),FI(1)
0010 PI=3.14159266
0011 N = 2**K
0012 MR = 0
0013 NM1=M-1
0014 DO 20 M=1,NM1
0015 L = M
0016 10 CONTINUE
0017 L=L/2
0018 IF(MR+L.GT.NM1) GO TO 10
0019 MR = MOD(MR,L) + L
0020 IF(MR.LE.M)GO TO 20
0021 MP1 = M + 1
0022 MRP1 = MR + 1
0023 TR = FR(MP1)
0024 FR(MP1) = FR(MRP1)
0025 FR(MRP1) = TR
0026 TI = FI(MP1)
0027 FI(MP1) = FI(MRP1)
0028 FI(MRP1) = TI
0029 20 CONTINUE
0030 L = 1
0031 30 CONTINUE
0032 IF(L.GE.N) RETURN
0033 ISTEP = 2*L
0034 EL = L
0035 DO 40 M=1,L
0036 A = PIFLOAT(1-M)/EL
0037 UR=COS(A)
0038 WI = SIN(A)
0039 DO 40 I=M,N,ISTEP
0040 J = I + L
0041 TR = UR*FR(J) - WI*FI(J)
0042 TI = UR*FI(J) + WI*FR(J)
0043 FI(J) = TR(I) - TI
0044 FR(J) = TR(I) + TI
0045 40 CONTINUE
0046 L = ISTEP
0047 40 CONTINUE
0048 L = ISTEP
0049 GO TO 30
0050 END
0051 ENDS
0052 LIST END 0053
```
DISTRIBUTION (cont):

USDA, Agricultural Research Service
Southwest Great Plains Research Center
Bushland, TX 79012
Attn: R. N. Clark

Consumers Outreach Coordinator
State Consumer Protection Board
State of New York Executive Department
99 Washington Avenue
Albany, NY 12210
Attn: J. D. Cohen

Alcoa Mill Products
Alcoa Center, PA 15069
Attn: A. G. Craig

University of Massachusetts
Mechanical and Aerospace Engineering Department
Amherst, MA 01003
Attn: D. E. Cromack, Associate Professor

Alcoa

DOE/ALO (3)
Albuquerque, NM 87185
Attn: D. K. Nowlin
W. P. Grace
D. W. King

DOE Headquarters (20)
Washington, DC 20545
Attn: L. V. Divone, Chief
Wind Systems Branch
D. F. Ancona, Program Manager
Wind Systems Branch

Southern Illinois University
School of Engineering
Carbondale, IL 62901
Attn: C. W. Dodd

Hamilton Standard
1730 NASA Boulevard
Room 207
Houston, TX 77058
Attn: D. P. Dougan

Nederlands Energy Research Foundation (E.C.N.)
Physics Department
Westerduinweg 3 Patten (nh)
The Netherlands
Attn: J. B. Dragt

Battelle-Pacific Northwest Laboratory
P.O. Box 999
Richland, WA 99352
Attn: C. E. Elderkin

The Mitre Corporation
1820 Dolley Madison Blvd.
McLean, VA 22102
Attn: F. R. Eldridge, Jr.

Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94304
Attn: E. Demeo

University of Colorado
Department of Aerospace Engineering Sciences
Boulder, CO 80309
Attn: J. D. Fock, Jr.

Public Service Co. of N.H.
1000 Elm Street
Manchester, NH 03105
Attn: L. C. Frederick

Dornier System GmbH
Postfach 1360
7890 Friedrichshafen
West Germany
Attn: A. Fritzsche

Tyler & Reynolds & Craig
One Boston Place
Boston, MA
Attn: W. W. Garth, IV

Amarillo College
Amarillo, TX 79100
Attn: E. Gilmore

University College of Swansea
Department of Mechanical Engineering
Singleton Park
Swansea SA2 8PP
United Kingdom
Attn: R. T. Griffiths

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
Attn: N. D. Ham

DOE/DST
20 Massachusetts Avenue
Washington, DC 20545
Attn: S. Hansen

Wind Engineering Corp.
Airport Industrial Area
Box 3936
Lubbock, TX 79415
Attn: C. F. Harris

Massachusetts Institute of Technology
Aero/Astro Department
Cambridge, MA 02139
Attn: W. L. Harris
DISTRIBUTION (cont):

Rocky Flats Plant (2)
P.O. Box 464
Golden, CO 80401
Attn: T. Healy

Helion
P.O. Box 4301
Sylmar, CA 91342

AMBIO
KVA
Fack, S-10405
Stockholm
Sweden
Attn: D. Hinrichsen,
Associate Editor

Sven Hugosson
Box 21048
S. 100 31 Stockholm 21
Sweden

Ben-Gurion University of the Negev
Department of Mechanical Engineering
Beer-Sheva, Israel
Attn: O. Igra

JBF Scientific Corporation
2 Jewel Drive
Wilmington, MA 01887
Attn: E. E. Johanson

Kansas State University
Electrical Engineering Department
Manhattan, KS 66506
Attn: G. L. Johnson, P.E.

Stanford University
Department of Mechanical Engineering
Stanford, CA 94305
Attn: J. P. Johnston

Alcoa Laboratories (2)
Aluminum Company of America
Alcoa Center, PA 15069
Attn: J. R. Jombock
J. T. Huang

Kaman Aerospace Corporation
Old Windsor Road
Bloomfield, CT 06002
Attn: W. Satosol

The College of Trades and Technology
P.O. Box 1893
Prince Philip Drive
St. John's, Newfoundland
A1C 5P7
Attn: R. E. Kolland

L. Kinnett
P.O. Box 6593
Santa Barbara, CA 93111

Michigan State University
Division of Engineering Research
East Lansing, MI 48824
Attn: O. Krauss

Lawrence Livermore Laboratory
P.O. Box 808 L-340
Livermore, CA 94550
Attn: D. W. Dorn

Public Service Company of New Mexico
P.O. Box 2267
Albuquerque, NM 87103
Attn: M. Lechner

Reynolds Metals Company
Mill Products Division
8601 West Broad Street
Richmond, VA 23261
Attn: G. E. Lemmon,
Industry Director

State Energy Commission
Research and Development Division
1111 Howe Avenue
Sacramento, CA 95825
Attn: J. Lerner

US Department of Agriculture
Agriculture Research Center
Building 303
Beltsville, MD 20705
Attn: L. Lilijedahl

Aeroenvironment, Inc.
660 South Arroyo Parkway
Pasadena, CA 91105
Attn: P. B. S. Lissaman

FFA, The Aeronautical Research Institute
Box 11021
S-16111 Bromma
Sweden
Attn: O. Ljungstrom

Los Alamos Scientific Laboratories
P.O. Box 1663
Los Alamos, NM 87544
Attn: J. D. Balcomb Q-DO-T
Library

PRC Energy Analysis Co.
7600 Old Springhouse Rd.
McLean, VA 22101
Attn: E. L. Luther,
Senior Associate
DISTRIBUTION (cont):

L. H. J. Maile
48 York Mills Rd.
Willowdale, Ontario
Canada M2P 1B4

Environmental Research
and Energy Planning Director
Environmental and Safety
Engineering Staff
The American Road
Dearborn, MI 48121
Attn: J. R. Maron,
Ford Motor Co.

Dardalen Associates
15110 Frederick Road
Woodbine, MD 21797
Attn: F. Matanzo

Tumac Industries, Inc.
650 Ford St.
Colorado Springs, CO 80915
Attn: J. R. McConnell

Kaman Sciences Corporation
P.O. Box 7463
Colorado Springs, CO 80933
Attn: J. Meiggs

Colorado State University
Department of Civil Engineering
Fort Collins, CO 80521
Attn: R. N. Meroney

Department of Economic Planning
and Development
Barrett Building
Cheyenne, WY 82002
Attn: G. N. Monsson

NASA
Langley Research Center
Hampton, VA 23665
Attn: R. Muraca, MS 317

NASA Lewis Research Center (2)
2100 Brookpark Road
Cleveland, OH 44135
Attn: J. Savino, MS 509-201
R. L. Thomas
W. Robbins
K. Kaza, MS 49-6

West Texas State University
Department of Physics
P.O. Box 248
Canyon, TX 79016
Attn: V. Nelson

Natural Power, Inc.
New Boston, NH 03070
Attn: L. Nichols

Oklahoma State University (2)
Stillwater, OK 74074
Attn: W. L. Hughes,
EE Department
D. K. McLaughlin,
ME Department

Oregon State University (2)
Corvallis, OR 97331
Attn: R. Wilson,
ME Department
R. W. Thresher,
ME Department

County Commissioner
City-County Bldg.
Precinct 4
El Paso, TX 79901
Attn: P. F. O'Rourke

Dow Chemical USA
Research Center
2800 Mitchell Drive
Walnut Creek, CA 94598
Attn: H. H. Paalman

Northwestern University
Department of Civil Engineering
Evanston, IL 60201
Attn: R. A. Parmelee

Draper Laboratory
555 Technology Square
Mail Station 22
Cambridge, MA 02139
Attn: A. Parthe

Riso National Laboratory
DK-4000 Roskilde
Denmark
Attn: H. Petersen

Division of Mechanical Engineering
Commonwealth Scientific and Industrial
Research Organization
Graham Road, Highett
Victoria, 3190
Australia
Attn: Dr. B. Rawlings, Chief

The University of Tennessee
Department of Electrical Engineering
Knoxville, TN 37916
Attn: T. W. Reddoch,
Associate Professor

Memorial University of Newfoundland
Faculty of Engineering
and Applied Sciences
St. John's Newfoundland
Canada A1C 5B7
Attn: A. Robb
DISTRIBUTION (cont):
Institut fur Leichtbrau
Technische Hochschule
Aachen
Wuempelstrasse 7
Germany
Attn: Dr. Ing Hans Ruscheweyh

DAFINDAL Limited
3570 Hawkestone Rd.,
Mississauga, Ontario
Canada L5C 2V8
Attn: Dr. L. Schienbein
Development Engineer

Arnan Seginer
Professor of Aerodynamics
Technion-Israel Institute of Technology
Department of Aeronautical Engineering
Haifa, Israel

Dr. H. Selzer
Dipl.-Phys.
Wehrtechnik und Energieforschung
ERNO-Raumfahrttechnik GmbH
Hunefeldstr. 1-5
Postfach 10 59 09
2800 Bremen 1
Germany

Bristol Aerospace Ltd,
Rocket and Space Division
P.O. Box 874
Winnipeg, Manitoba
Canada R3C 2S4
Attn: H. Sevier

National Aeronautical Laboratory
Aerodynamics Division
Bangalore 560017
India
Attn: P. N. Shankar

Kingston Polytechnic
Canbury Park Road
Kingston, Surrey
United Kingdom
Attn: David Sharpe

Cornell University
Sibley School of Mechanical and
Aerospace Engineering
Ithaca, NY 14853
Attn: D. G. Shepherd

Colorado State University
Mechanical Engineering Department Head
Ft. Collins, CO 80521
Attn: F. Smith

Instituto Technologico
Costa Rica
Apartado 159 Cartago
Costa Rica
Attn: K. Smith

Iowa State University
Agricultural Engineering, Room 213
Ames, IA 50010
Attn: L., H. Soderholm

H. Sonksen
18600 Main St.
Huntington Beach, CA 92648

Southwest Research Institute (2)
P.O. Drawer 28501
San Antonio, TX 78284
Attn: W. L. Donaldson, Sr. V. Pres.
R. K. Swanson

R. Stevenson
Route 2
Box 85
Springfield, MO 65802

Morey/Stjernholm and Associates
1050 Magnolia Street
Colorado Springs, CO 80907
Attn: D. T. Stjernholm, P.E.,
Mechanical Design Engineer

G. W. Stricker
333 Van Gordon 30-559
Lakewood, CO 80228

C. J. Sweet
Rt. 4, Box 338
Mt. Airy, MD 21771

Low Speed Aerodynamics Section (3)
NRC-National Aeronautical Establishment
Ottawa 7, Ontario
Canada K1A OR6
Attn: R. J. Templin

DOE/ALO
Albuquerque, NM 87185
Attn: G. T. Tennyson

Texas Tech University (3)
P.O. Box 4289
Lubbock, TX 79409
Attn: K. C. Mehta, CE Dept.
J. Strickland, ME Dept.
J. Lawrence, ME Dept.

Atari, Inc.
155 Moffett Park Drive
Sunnyvale, CA 94086
Attn: F. Thompson
DISTRIBUTION (cont):

United Engineers and Constructors, Inc.
Advanced Engineering Dept.
30 South 17th Street
Philadelphia, PA 19101
Attn: A. J. Karalis

United Nations Environment Program
485 Lexington Avenue
New York, NY 10017
Attn: I. H. Usmani

University of New Mexico (10)
Albuquerque, NM 87131
Attn: W. Baker, ME Dept.
 R. Edoel, N.M. Energy Research Inst.
 J. D. Finley, Physics Dept.
 R. Hersh, Mathematics Dept.
 J. Leigh, N.M. Energy Research Inst.
 C. Moler, Mathematics Dept.
 V. Sloglund, ME Dept.
 S. Steinberg, Mathematics Dept.
 A. Stone, Mathematics Dept.
 B. Wilden, ME Dept.

Solar Energy Research Institute (2)
1536 Cole Blvd.
Golden, CO 80401
Attn: L. E. Vas
 P. Weis

Alcoa Allied Products
Aluminum Company of America
Alcoa Center, PA 15069
Attn: P. N. Vosburgh,
 Development Mgr.

National Aerospace Laboratory
Anthony Fokkerweg 2
Amsterdam 1017
The Netherlands
Attn: Otto de Vries

West Virginia University
Department of Aero Engineering
1062 Kountz Avenue
Morgantown, WV 26505
Attn: R. Walters

Bonneville Power Administration
P.O. Box 3621
Portland, OR 97225
Attn: E. J. Warchol

Energy and Power Systems
ERA Ltd.
Cleeve Rd.
Leatherhead
Surrey KT22 7SA
England
Attn: D. F. Warne, Manager

Stanford University
548B Crothers Memorial Hall
Stanford, CA 94305
Attn: R. A. Watson

Watson Bowman Associates, Inc.
1280 Niagara St.
Buffalo, NY 14213
Attn: R. J. Watson

Tulane University
Department of Mechanical Engineering
New Orleans, LA 70018
Attn: R. G. Watts

Mississippi State University
Mechanical Engineering Department
Mississippi State, MS 39762
Attn: W. G. Wells, P.E., Assoc. Prof.

University of Alaska
Geophysical Institute
Fairbanks, AK 99701
Attn: T. Wentink, Jr.

West Texas State University
Government Depository Library
Number 613
Canyon, TX 79015

Wind Energy Report
Box 14
104 S. Village Ave.
Rockville Centre, NY 11571
Attn: Farrell Smith Seiler

Central Solar Energy Research Corporation
1200 Sixth Street
328 Executive Plaza
Detroit, MI 48226
Attn: R. E. Wong, Asst. Director

Dominion Aluminum Fabricating Ltd.
3570 Hawkestone Road
Mississauga, Ontario
Canada L5C 2V8
Attn: C. Wood
DISTRIBUTION (cont):

1000 G. A. Fowler
1200 L. D. Smith
3161 J. E. Mitchell (15)
3161 P. S. Wilson
4533 J. W. Reed
4700 J. H. Scott
4710 G. E. Brandvold
4715 R. H. Braasch (100)
4715 R. D. Grover
4715 E. G. Kadle
4715 R. O. Nellums
4715 W. N. Sullivan
4715 M. H. Worstell
5520 T. B. Lane
5521 D. W. Lobitz
5523 R. C. Reuter, Jr.
5525 T. G. Carne
5525 P. J. Sutherland
5600 D. B. Shuster
5620 M. M. Newsom
5630 R. C. Maydew
5632 C. W. Peterson
5632 P. C. Klimas
5633 S. McAlees, Jr.
5633 R. E. Sheldahl
8266 E. A. Aas
3141 T. L. Werner (5)
3151 W. L. Garner (3)

For DOE/TIC (Unlimited Release)