Stress Testing of Semiconductor Switches for PV Inverter Applications at Sandia National Laboratories

Utility-Scale Grid-Tied PV Inverter Reliability Workshop

Robert Kaplar, Matthew Marinella, Reinhard Brock
January 27, 2011

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

This work was performed under funding from the DOE Solar Energy Technologies Program and the DOE Office of Electricity Energy Program.
Is the inverter the least reliable component of the PV system?

Source: Photovoltaics International pp. 173-179
PV International Edition 5 (Sep. 16, 2009)
Basic inverter circuit topology
(single-phase H-bridge)

Other critical components?

Kaplar, Marinella, Brock; 27-Jan-2011
Semiconductor switch: Insulated-Gate Bipolar Transistor (IGBT)

- Hybrid MOS-bipolar structure
- Main conduction is through the bipolar device with the base current controlled by the MOS device
- Allows for very high collector currents coupled with high gate impedance
- Switching tends to be slower than power MOSFET due to minority carrier storage in base region
- Unlike power MOSFET, minimal reverse current

Drawings from Advanced Power Technology Application Note APT0201 (July 2002)
IGBT Device Reliability

- IGBT is repeatedly subjected to alternating cycles of ON state (high current / low voltage) and OFF state (low current / high voltage)

- During switching, the device is briefly (few μs) subjected to a transition during which it experiences very high power (high current / high voltage)

- High power generates lots of heat; improper heat-sinking may degrade device lifetime and / or cause catastrophic failure

- Inverter may need to operate in hot environments, and may also be subject to wide swings in operating temperature

- Si-based IGBT is a fairly mature but is subject to degradation mechanisms that are common to all Si-based devices (e.g. SiO$_2$ gate breakdown)

- Our initial testing has been focused on high current / low voltage stress condition
Experimental set-up

- Safety interlock box
- Sample mount
- Dual-channel High-resolution SMUs (gate current, etc.)
- High-voltage (1100 V each) SMUs for off-state stressing
- Heating / cooling plate
- Heating / cooling plate power supply and control

Kaplar, Marinella, Brock; 27-Jan-2011
Sample mounting
Stress / measure equipment

3200 W power supply
(400 A, 8 V)

Curve tracer
Bias configuration for IGBT stress-measure experiments

\[V_{CE} \]

\[V_{GE} \]
Experiment #1 (25°C stress)

1. Measure I_C-V_{GE} curve for fixed $V_{CE} = 1$ V at 25°C

2. Stress device using $V_{GE} = 20$ V, $V_{CE} = 2$ V at 25°C; $I_C \approx 38$ A

3. Repeat

600 V, 60 A device found in several inverters that we examined

Fast initial degradation in sub-threshold region, appears to saturate; not much degradation in on-state characteristics

Degradation not observed on all samples tested (a few samples measured so far)
Experiment #2 (100°C stress)
Use the same device as the previous experiment

1. Measure I_C-V_{GE} curve for fixed $V_{CE} = 1$ V at 25°C
2. Stress device using $V_{GE} = 20$ V, $V_{CE} = 2$ V at 100°C; $I_C \approx 38$ A
3. Repeat

High-temperature stress appears to anneal out the damage from the low-temperature stress

Is change in IV curve due to introduction of parasitic device?

Kaplar, Marinella, Brock; 27-Jan-2011
Experiment #3 (100°C stress)

Use a fresh device

1. Measure I_C-V_{GE} curve for fixed $V_{CE} = 1$ V at 25°C
2. Stress device using $V_{GE} = 20$ V, $V_{CE} = 2$ V at 100°C; $I_C \approx 38$ A
3. Repeat

Minimal degradation when stressed at high temperature; results suggestive of hot-carrier damage in the MOS part of the device; but gate current becomes worse at high T (different failure mechanism)
Possible impact on inverter performance

- OFF-state leakage current may result in loss of power delivered to load
- Need to evaluate devices at much higher V_{CE}
- Planning SPICE modeling to determine impact on inverter efficiency
Same concept applies to three-phase inverter
IGBT monitoring inside inverter

• Plan is to monitor IGBT properties inside working inverter to compare degradation to device-level testing

• Several inverters have been purchased, currently setting up (planning to use solar simulator as DC source)
“Post-Silicon” device reliability for power electronics

- Record-efficiency inverter has been demonstrated using SiC MOSFETs

- We have done reliability testing on the same MOSFET used in the inverter

Kaplar, Marinella, Brock; 27-Jan-2011
SiC power MOSFET

Drawings from International Rectifier, “Power MOSFET Basics”

• SiC has many intrinsic material advantages over Si for power devices
 - Large bandgap (low intrinsic carrier concentration at high T)
 - High breakdown field strength (avalanche breakdown)
 - High thermal conductivity
• But it is a much less mature technology and is thus less reliable
 - SiO₂ gate oxide reliability
 - SiC material defects (μ-pipes), stacking faults
- Measured I_D-V_G ($V_D = +1$ V) and I_D-V_D ($V_G = +4$ V) curves at room T
- Heated sample to temperature indicated and applied $+20$ V gate voltage for 7 minutes
- Cooled back to room temperature and I_D-V_G, I_D-V_D curves were re-measured
- Process was repeated for various stress temperatures
- Positive V_T shift suggests presence of negative charge in oxide, perhaps injected from n-channel during stress
- Decrease in current for fixed bias degrades ON-state performance of device
n-channel SiC MOSFET BTS experiment #2

- Sample heated to 225°C and I_D-V_G curve measured ($V_D = +1$ V)
- Gate stress of +20 V applied for time indicated
- I_D-V_G curve re-measured at 225°C
- Process was repeated for various additional stress times
- Increase in V_T is again observed and will degrade ON-state performance of switch, resulting in less power delivered to load

Kaplar, Marinella, Brock; 27-Jan-2011
Continuing work

• Stressing of Si-based IGBTs under various conditions
 - High current, high voltage, transient high power

• Monitoring of IGBTs in actual inverters and comparison to device-level testing

• Modeling of device lifetime and failure mechanisms for inclusion in inverter and system reliability models

• “Post-Si” device studies (SiC, GaN) for future power electronics needs
 - Basic defect studies and reliability physics
 - Device modeling

• Stress testing of electrolytic bus capacitors

• Goal is to establish unbiased, standardized test procedures and reliability / efficiency models for industry