Wind Plant Reliability Benchmark
September 2013

Continuous Reliability Enhancement for Wind (CREW) Database

Authors
Valerie Hines, Lead Reliability Analyst
Alistair Ogilvie, CREW Project Lead
Cody Bond, Data Team

SAND Report # 2013-7287P
Acknowledgements

- This public benchmark report is the third industry report to be issued under the Continuous Reliability Enhancement for Wind (CREW) national database project. The CREW project is guided and funded by the Department of Energy, Energy Efficiency and Renewable Energy program office.

- Sandia National Laboratories would like to acknowledge the contributions of both Strategic Power Systems and the wind plant owner/operators who participated in the development of the CREW database as pilot partners. These partners include enXco Service Corporation, Shell WindEnergy Inc., Xcel Energy, and Wind Capital Group.

- Data gathered from individual partners is proprietary and is only used in an aggregated manner, in order to protect data privacy.
Results at a Glance

- Data represents 327,000 turbine-days
- Key metrics all slightly improved, compared to 2012

- Average: 1.6 days of generating before each downtime event
 - Some events automatically reset, others need intervention

<table>
<thead>
<tr>
<th>Wind Turbine (Other)</th>
<th>2013 Benchmark</th>
<th>2012 Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor/Blades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gearbox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures - Enclosures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance of Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drivetrain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Gearbox not in top 5 systems
 - Benchmarking faults and symptoms, at this point
 - Current emphasis on electronic work orders for wind industry

Event & SCADA Data Source: SPS ORAP Wind
Wind Energy Technologies Department

FOCUS
- Industry needs
- Reducing energy cost
- Promoting large-scale deployment of clean, affordable energy

GOALS
- High fidelity modeling
- Blade design to eliminate barriers
- Increased energy capture & improved efficiency
- Increased system reliability
- Testing at reduced cost
CREW: Continuous Reliability Enhancement for Wind

Goal: Create a national reliability database of wind plant operating data to enable reliability analysis

Method:
Sandia partners with Strategic Power Systems (SPS), whose ORAPWind® software collects real-time data from wind plant partners

Key Objectives:
- **Benchmark reliability performance**
- Track operating performance at a system-to-component level
- Characterize issues and identify technology improvement opportunities
- Protect proprietary information
- Enable operations and maintenance cost reduction
- Increase confidence from financial sector and policy makers
Performance Dashboard

- Cloud based online analysis – 24x7
- RAM and Performance data analysis
- **One minute statistical data** – everyone else uses 10 minute data
- ORAP® Transformed data
- Fault / Event analysis
- Industry benchmarks
- IEC / IEEE Availability reporting
- NERC GADS reporting
- Data Completeness and Quality monitoring metrics

ORAPWind.spsinc.com
Results and Discussion
Fleet Representation

- CREW represents 2.7% of U.S. turbines
 - 2.4% of Megawatts; 1.9% of plants
- Operations breadth from partners yields a dataset with a useful view of the U.S. fleet’s performance
 - Though results may not be fully representative

<table>
<thead>
<tr>
<th># Plants</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td># Turbines</td>
<td>800-900</td>
</tr>
<tr>
<td># Megawatts</td>
<td>1,300-1,400</td>
</tr>
<tr>
<td># Manufacturers</td>
<td>3</td>
</tr>
<tr>
<td># Turbine Models</td>
<td>6</td>
</tr>
<tr>
<td># Turbine-Days, Information Available</td>
<td>327,000</td>
</tr>
</tbody>
</table>
CREW Fleet Metrics

- Key metrics all improved slightly over 2012 values
 - Likely due to a variety of factors, including actual performance improvement and improved data quality
- Operational Availability & Capacity Factors are in alignment with data & anecdotes from operators and OEMs, but higher than other 3rd party benchmarks

<table>
<thead>
<tr>
<th></th>
<th>2013 Benchmark</th>
<th>2012 Benchmark</th>
<th>2011 Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Availability</td>
<td>97.6%</td>
<td>97.0%</td>
<td>94.8%</td>
</tr>
<tr>
<td>Utilization</td>
<td>83.0%</td>
<td>82.7%</td>
<td>78.5%</td>
</tr>
<tr>
<td>Capacity Factor</td>
<td>36.1%</td>
<td>36.0%</td>
<td>33.4%</td>
</tr>
<tr>
<td>MTBE (hrs)</td>
<td>39</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td>Mean Downtime (hrs)</td>
<td>1.3</td>
<td>1.6</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Availability Time Accounting

- SCADA and data transfer challenges lead to time with Information Unavailable
 - Analysis needs to highlight the common communication and IT issues resulting in missing data
 - CREW, SPS, and plants are actively identifying these industry-wide issues & addressing them where possible

Pie chart:
- Generating: 59.7%
- Reserve Shutdown - Wind: 3.1%
- Reserve Shutdown - Other: 7.4%
- Scheduled Maintenance: 0.2%
- Unscheduled Maintenance: 0.7%
- Forced Outage & Unavailability: 0.8%
- Information Unavailable: 28.1%

Event & SCADA Data Source: SPS ORAPwind
Improvements in Information Available

- Information Available improved over 2012 Benchmark
 - Higher overall average AND less month-to-month variability
Focusing on What is Known

- Did not assume turbine’s status
 - Essentially treated this time as if it never existed
- In addition to understanding impact of Information Unavailable, also explore after removing this time

Event & SCADA Data Source: SPS ORAP Wind
Availability Time Accounting

Information Available

- Utilization = Generating
- Operational Availability
 = Generating + Reserve Shutdown Wind + Reserve Shutdown Other
- Can calculate other metrics of interest from these categories
 - Example: Technical Availability
 = (Generating + Reserve Shutdown Wind + Reserve Shutdown Other) / (100%-Scheduled Maintenance)

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating</td>
<td>83.0%</td>
</tr>
<tr>
<td>Reserve Shutdown - Wind</td>
<td>4.3%</td>
</tr>
<tr>
<td>Reserve Shutdown - Other</td>
<td>10.3%</td>
</tr>
<tr>
<td>Scheduled Maintenance</td>
<td>0.3%</td>
</tr>
<tr>
<td>Unscheduled Maintenance</td>
<td>1.0%</td>
</tr>
<tr>
<td>Forced Outage & Unavailability</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

Utilization = 83.0%
Operational Availability = 97.6%
Wind Speed & Generation Time Accounting

Information Available

- Categories show what the turbine is doing and what the wind is doing
- Incorporates Environmental Impact (Wind Speed) on Turbine (Generation)

- 3.3% of the time, the wind is good but the turbines are not ready
- 56% of downtime happens when wind is below Cut In
- Rated generation (90%+) 16% of the time

Event & SCADA Data Source:
Power Curve

- Real-world variability
- Under performance
 - Below and right of main curve ("paint drips")
 - Examples include ramp up/down, true performance issues, intentional setting changes (e.g., decrease noise or extend the life of a failing part)
- Over-performance
 - Above thick gray line
 - Generation (10 minute average) above 1.02 times nameplate capacity 0.54% of the time (47 hours/turbine/year); up from 2012 Benchmark
Unavailability Contributors: Systems

- **Unavailability**: combined impact of event frequency (how often) and downtime (how long)
- Dominated by “Wind Turbine (Other)” events
 - Mainly when technician has turbine in maintenance/repair mode
 - Down to 60%, from a high of 71.7% in 2011

SCADA faults tend to indicate symptom, not necessarily root cause
Event Frequency vs. Downtime

- Sorted by Unavailability Contribution
- Aside from “Wind Turbine (Other)”, Rotor/Blades & Generator have most frequent events
- Relatively little variability in mean downtime

<table>
<thead>
<tr>
<th>Event</th>
<th>Average # Events per Year (per Turbine)</th>
<th>Mean Downtime per Event (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Turbine (Other)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotor/Blades</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Generator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gearbox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures - Enclosures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balance of Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drivetrain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Event & SCADA Data Source:
Unavailability Contributors: Components + Event Types

- Dominated by general events, but their influence is lessening
 - “Wind Turbine” accounts for 60% of unavailability
 - Unscheduled & Scheduled Maintenance: technician has turbine in maintenance/repair mode
 - Work Orders are critical for establishing root cause

SCADA faults tend to indicate symptom, not necessarily root cause
Closing
Observations

- Analysis Results Are Stabilizing
 - Operational Availability, Utilization, and Capacity Factor each increased by less than 1% (compared to 2012 Benchmark)
 - Top 3 system-level unavailability contributors were identical to 2012
 - 8 of top 10 component-level contributors were identical, too
 - Results stabilization, combined with industry alignment on key metrics, provides a foundation for industry representation

- Electronic Work Orders
 - Work Order information is critical to understanding a complete reliability picture, including component-level root cause insights
 - Gearbox still absent from top 3 system-level unavailability contributors; likely due to SCADA’s limited insight into major repairs

- Event Frequency
 - Scheduled and Unscheduled Maintenance Events occur, on average, every 1.9 weeks for each turbine
 - Because the events are based on SCADA data, there are many short duration and nearly back-to-back events
 - These Maintenance events occur every 3.8 weeks, if only counting events that last at least 1.5 hours and are at least 4 hours apart
Accessing More Information

- The companion technical report on the 2013 Benchmark can be found at http://energy.sandia.gov/crewbenchmark
- Sandia keeps an archive of our past wind plant reliability publications at http://energy.sandia.gov/?page_id=3057#WPR

- All U.S. wind plant owners, operators and OEM’s are invited to participate. Please contact:

 | Jon White, CREW Project Lead | Jim Thomas, ORAPWind® Project Manager |
 | Sandia National Laboratories | Strategic Power Systems, Inc. |
 | jonwhit@sandia.gov | Jim.Thomas@spsinc.com |
 | (505) 284-5400 | (704) 945-4642 |

- The data in the CREW database is proprietary to our partners. We are not able to disclose non-aggregated data.

 - Due to a large volume of requests and limited funding, Sandia is not able to provide customized subsets of aggregated data outside the Department of Energy’s Energy Efficiency and Renewable Energy program.
 - Strategic Power Systems, our corporate partner in this effort, may be able to assist with more information about wind plant reliability. For more information, please contact SPS’ Jim Thomas.