Optimized Active Aerodynamic Blade Control for Load Alleviation on Large Wind Turbines

David G. Wilson, Dale E. Berg, Don W. Lobitz, Jose R. Zayas

Wind Energy Technology
Sandia National Laboratories
dwilso@sandia.gov

AWEA WINDPOWER 2008
Houston, Texas
June 4, 2008
Acknowledgments

- UC Davis
 - Professor Case van Dam
 - M. Leal
 - J.P. Baker

- Sandia National Laboratories
 - Jeffery J. Carlson
 - Tom Ashwill
 - Rush D. Robinett, III

- National Renewable Energy Laboratory
 - Alan Wright
 - Neil Kelley
Problem Statement and Goal

- With Wind Turbines Blades Getting Larger and Heavier, Can the Rotor Weight be Reduced by Adding Active Devices?
- Can Active Control be Used to Reduce Fatigue Loads?
- Can Energy Capture in Low Wind Conditions be Improved?

Initial Research Goal:
Understand the Implications and Benefits: Embedded Active Blade Control: Alleviate High Frequency Dynamics
Research Objectives

- Define the active aero control problem (critical path /drivers, analysis/simulation scenario, performance index: maximize energy capture, minimize root moment, other)
- Proof-of-concept (i.e., microtab control to reduce fatigue loads/cycling)
- Preliminary Technical Approach:
 - Optimization for tab on/off sequencing
 - Conventional feedback control for reducing load/fatigue in turbulent case
 - Dynamic stall flutter problem analysis w/ nonlinear power flow limit cycle control proof-of-concept
Microtab Concept
Background

- Evolutionary Development of Gurney flap
- Tab Near Trailing Edge Deploys Normal to Surface
- Deployment Height on the Order of the Boundary Layer Thickness
- Effectively Changes Sectional Camber and Modifies Trailing Edge Flow Development (so-called Kutta condition)

Collaboration: Case van Dam at UC Davis
Microtab Concept

- Small, Simple, Fast Response
- Retractable and Controllabe
- Lightweight, Inexpensive
- Two-Position “ON-OFF” Actuation (option)
- Low Power Consumption
- No Hinge Moments
- Expansion Possibilities (scalability)
- Do Not Require Significant Changes to Conventional Lifting Surface Design (i.e., manufacturing or materials)

Collaboration:
Case van Dam
UC Davis
MicroTab Profiles
AeroDyn Inputs

![Graphs showing lift and drag coefficients vs. angle of attack.](image)
Modified Control System Design

- **Hybrid Controller:** Proportional-Integral (PI) Blade Pitch Control with Proportional-Derivative (PD) Microtab Control for above rated wind speed conditions, Region III

- **Microtab PD Control:** Uses tip deflection feedback and nominal reference tip deflection as set point

- **Optimize** controller gains based on Performance Index for constant power output while minimize cyclic loads (root flapwise bending moment) in Region III
System Modeling and Analysis
Augmented w/ Microtab Control

Dynamic Simulation Environment: FAST (Fatigue, Aerodynamics, Structures, and Turbulence) run within Matlab/Simulink

This delay prevents direct feedthrough which causes algebraic loops.
CART Model Investigated

Controls
Advanced Research Turbine (CART): utilized as simulation testbed with 600kW rated power @ 42 RPM

WindPACT Virtual Turbine Calculated Static System Frequencies [2]

<table>
<thead>
<tr>
<th>Wavelet Detail Band</th>
<th>Frequency Range (Hz)</th>
<th>Vibrational Modes Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>D9</td>
<td>0.234 – 0.469</td>
<td>1-P, Tower bending</td>
</tr>
<tr>
<td>D8</td>
<td>0.469-0.938</td>
<td>2-P</td>
</tr>
<tr>
<td>D7</td>
<td>0.938-1.875</td>
<td>Blade 1st bending</td>
</tr>
<tr>
<td>D6</td>
<td>1.875 – 3.75</td>
<td>Blade 2nd bending</td>
</tr>
<tr>
<td>D5</td>
<td>3.75 – 7.5</td>
<td>Blade, blade/tower</td>
</tr>
<tr>
<td>D4</td>
<td>7.5 – 15</td>
<td>Blade, blade/tower</td>
</tr>
<tr>
<td>D3</td>
<td>15 – 30</td>
<td>Blade, blade/tower</td>
</tr>
</tbody>
</table>

Turbulent Intensity [1]

- Derived from model: virtual variable-speed 1.5-MW, 3-bladed upwind turbine: 85-m hub height, 70.5-m rotor DIA. Examine time-varying turbulence/loading response
- Root Flapwise Bending Loads, Band D6-D7
- Time-frequency spectral decomposition of root flapwise load encountering coherent turbulent structure
- Red color signifies occurrence: highest level of dynamic stress energy - dark blue least
- While peak amplitudes of load time histories in Bands D6 - D7 decreases, number of stress reversals increase as rotor passes through coherent turbulent structures
- Due to nature of load application and existence small values of structural damping – potential significant transient storage of vibrational energy that must be dissipated
- Potential modal dynamic amplification may exist, could contribute to lower than designed component service lifetimes
- Microtabs good candidate to reduce high frequency dynamics and fatigue loads
Turbulent Wind Input
(Specific Case Explored)

23.2 m/s Mean Wind Speed, IEC Type A Turbulence
Time Domain - FAST/Simulink

Simulation Results

- Blade 1 Tip Deflection (m)
 - No MicroTabs
 - MicroTabs

- Blade 1 Root Flap Bending Moment (kNm)
 - No MicroTabs
 - MicroTabs

Graphs showing time-domain simulation results with comparison between 'No MicroTabs' and 'MicroTabs' conditions.
Time Domain - FAST/Simulink Simulation Results

![Graph showing blade pitch angle over time with and without microtabs. The x-axis represents time in seconds, ranging from 0 to 20. The y-axis represents blade pitch angle in degrees, ranging from 13 to 18. Two lines are shown: red for 'No MicroTabs' and blue for 'MicroTabs'.](image)

![Graph showing blade microtab sequencing. The x-axis represents time in seconds, ranging from 0 to 20. The y-axis represents blade 1 microtab sequencing values, ranging from -1 to 1.](image)
Time Domain - FAST/Simulink
Simulation Results

- Generator Power (kW)
- Rotor Speed (RPM)

No MicroTabs vs MicroTabs
Time Domain - FAST/Simulink Simulation Results

- **Time (sec)**
- **Tower Base Side-Side Moment (kNm)**
 - No MicroTabs
 - MicroTabs

- **Time (sec)**
- **Tower Base Fore-Aft Moment (kNm)**
 - No MicroTabs
 - MicroTabs
Visualization: MicroTab Control

(Click on image below to play video)
Observations - Summary

- Potential Benefits to Designer:
 - Increase Effective Rotor Size
 - Extend Potential Life Expectancy and Reliability
 - Ultimately Reduce Cost-Of-Energy of Future Large Wind Turbine Machines

- Active Aero Devices may Provide Substantial Benefit for Future Wind Turbine Designs
Future Control Design: Reduce Load/Fatigue: Increase Energy Capture

- Lightweight adaptive blade design with embedded sensors and actuators utilizing integrated hybrid pitch/distributed flap control system
- Combined blade pitch/flap control system: reduced loading above rated speed (may increase energy capture below rated speed)
- Nonlinear flutter control system based on nonlinear power flow design: identifies stability boundary, improved performance by promoting lightweight/high strength blade design
- Smart structures technology to be investigated to facilitate implementation of smart blade concept