Fatigue Testing of 9 m Carbon Fiber Wind Turbine Research Blades

Joshua Paquette
Sandia National Laboratories

Scott Hughes and Jeroen van Dam
National Renewable Energy Laboratory

Jay Johnson
Georgia Institute of Technology

46th AIAA Aerospace Sciences Meeting and Exhibit
Reno, NV
January 10th, 2008
Background, Purpose, and Overview

• Background
 – SNL initiated a blade research program in 2002 to investigate the use of carbon in subscale 9 m blades
 – 7 CX-100 and 7 TX-100 blades were manufactured
 – Blades from each set have undergone modal and static tests

• Purpose of Fatigue Tests
 – Verify that blades met their design criteria
 – Investigate unique structural aspects of the blades
 – Examine the use of advanced sensors

• Overview
 – Carbon in blades
 – 9 m Blade Designs
 – Test Setup
 – Test Results
 – Conclusions
Carbon in Blades

- Advantages:
 - High stiffness/weight ratio
 - Highly orthotropic
 - Excellent fatigue properties with straight fibers

- Disadvantages:
 - Higher cost
 - Limited availability
 - Difficult to infuse
 - Poor properties with wavy fibers
 - Possible stiffness mismatch issues

- Potential solution:
 - SAERTEX glass/carbon triax fabric
 - Relatively inexpensive
 - Infusible
 - Dry fabric for conventional infusion techniques
 - Maintains excellent fiber straightness

Studies of carbon materials performed by and in collaboration with GEC and MSU
SAERTEX Carbon Tri-ax Fatigue Performance

Source: Montana State University
CX-100

- CX-100 (Carbon Experimental 100 kW)
- Manufactured using existing 9 m molds
- Based on ERS-100 blade with non-scalloped root
- Glass-Epoxy blade with full length carbon spar cap

CX-100 Blade Skin
TX-100

- TX-100 (Twist-Bend Coupled Experimental 100 kW)
- Identical geometry to CX-100
- Partial-length glass spar cap
- 20° off-axis carbon in outboard (~>3.5 m) skins to produce material-induced, passive aerodynamic load alleviation

Source: NREL

Material Induced Twist-Bend Coupling

TX-100 Blade Skin

Off-axis Carbon Skin

Glass Spar Cap
9 m Blade designs

CX-100 (top) and TX-100 (bottom) Geometry and Major Laminate Regions
Fatigue Test Methodology

- Test objective
 - Demonstrate 20-year fatigue equivalent life
 - Complete test in 1-4 million cycles

- Fatigue Equivalent Life Calculation Procedure
 1. Perform system dynamics simulations
 2. Count fatigue cycles/second
 3. Extrapolate to 20-years
 4. Compute damage fraction using damage model along with material data, appropriate safety factors, and damage accumulation counting method
CX-100 and TX-100 Simulations

CX-100
(Static Driven Design)

TX-100
(Fatigue Driven Design)

Flap Bending Moment at Station 1800 (kN-m)

Cycles in 20-year Life

Rainflow counts of bending moment (binned by range)

Peak static load resulting from 50-year extreme gust

Rainflow counts of bending moment (plotted by maximum)

Peak static load (characteristic)
Test Setup: CX-100

- Fatigue analysis focused on carbon spar cap
- Slope parameter of 12 used (GL standards: 10 for glass, 14 for carbon)
- Single-axis flapwise point loading
 - Hydraulic cylinder used to apply oscillating load at single point
 - Robust, simple setup
 - Only allows for target load matching in limited area
- 1.25-12.5 kN applied at saddle for 1M cycles, then increased by 10% every 500k cycles
- 20-year fatigue equivalent life demonstrated in 6k cycles
Test Setup: TX-100

- Fatigue analysis focused on both glass and carbon areas
- Slope parameter of 10 used (for off-axis loading)
- Single-axis flapwise resonant loading
 - Uses oscillating mass to excite natural frequencies of blade-mass system
 - Mean load adjusted by exciter and ballast masses
 - Amplitude adjusted by exciter displacement
 - Complicated setup required to produce correct shape and amplitude
 - Potentially allows for load matching for large portion of blade span
- 1M, 2M, and 4M cycle test loads calculated
- Test began with 4M load and then increased 10% beginning at 1M cycle count and repeating every 500k cycles
- Unable to increase at 2.5M cycles, load was held constant thereafter
- 20-year fatigue equivalent life demonstrated at 2M cycles
UREX

- Developed specifically for the unique aspects of testing bend-twist coupled blades
- Pair of hydraulic actuators mounted to the blade through a ballast saddle
- Rotational inertia minimized compared to mounting actuator and resonant mass above the blade
- Possible to apply torsional loading by adjusting actuator phases
- Horizontally mounted cylinder can be used to excite edge movement

UREX Schematic
Applied Loads

CX-100
(Single Point Loading)

TX-100
(Resonant Loading)

Fatigue Test Applied Loads
CX-100 Test Results

CX-100 Early in Fatigue Test
CX-100 Test Results

CX-100 Dimple (left) and Tip Movement (right) just before Failure
CX-100 Test Results

CX-100 Dimple (left) and Tip Movement (right) at Failure
CX-100 Test Results

January 10th, 2008
CX-100 Failure Mechanism

- Dimple formed early during test around max chord
- Low pressure skin pushed outward aft of spar cap and inward forward of spar cap
- At 1.5M cycles, crack began to grow along spar cap/aft-panel intersection
- Crack resulted in greatly decreased stiffness in the area and cause severe edgewise movement

CX-100 Crack Growth
TX-100 Test Results

TX-100 Early in Fatigue Test
TX-100 Test Results

TX-100 Sparcap Tip Stress Contours
TX-100 Test Results

TX-100 Crack Growth Beginning (left) and Progression (right)
TX-100 Strain Gage Layout

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Millions of Cycles

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Normalized Stiffness

G15

G16

G27

G30

G25

G26

G24

G31

G28

G30

TX-100 Strain Gage Layout
TX-100 Failure Mechanism

- At 723k cycle count, crack began to grow just outboard of HP spar cap termination
- Cracks grew at 65° angle from blade axis until 2.4M cycles
- Crack then changed direction and grew along 20° direction corresponding to carbon fiber direction
- Growth of crack continued until 4M cycles when excessive torsional movement of the blade tip occurred

TX-100 HP Crack Growth
Conclusions

- CX-100 failed due to buckle formation near max-chord which caused a fracture between the sparcap and aft balsa panel leading to excessive edge movement
- TX-100 failed due to crack which grew from sparcap termination on HP surface along carbon fiber direction causing excessive tip rotation
- Infused carbon was effectively implemented in a CX-100 and TX-100 blade designs
- Both blades failed in carbon areas
- Blades failed due to damage in off-axis directions, showing the difficulty in using fiber-direction fatigue calculations
Acknowledgements

US Department of Energy
Mike Jenks, Jason Cotrell, and Dave Sims (NREL)
Dayton Griffin and Tim McCoy (GEC)
Mark Rumsey, Perry Jones, Wesley Johnson (SNL)
Mike Zuteck
Derek Berry (TPI)