

Wind Blade Manufacturing Innovation

Juan Camilo Serrano Fiber Glass Science and Technology

Sandia National Laboratories · 2012 Wind Turbine Blade Workshop · May 30-31 2012 Presented by Juan Camilo Serrano · PPG Industries Inc.

Outline

- PPG Wind Energy
- Project Motivation and Objectives
- Project Tasks and Results
 - Manufacturing and Automation
 - Materials Evaluation and Testing
 - Predictive Analysis
 - Feasibility Assessment
- Generation Observations and Industry Trends

PPG Wind Energy

- Offering a multitude of products for wind turbines
 - Fiberglass for blades & nacelles
 - Coatings for blades & towers
- World leader in fiber glass manufacturing
 - Established in wind energy for 15+ years
 - Production & Sales from 3 major continents
 - HYBON(R) 2002 and 2001 fiber glass rovings are standard product for wind blades
 - Specified in blades from most major manufacturers around the world.
- Continuing to develop new products to enhance future wind energy production

Project Motivation

- Blades are ~22% of total cost of turbine.
- Existing production process is labor intensive.
- ~60% of the blade is fiber glass.
- Cost of Energy (COE)
 - Today: ~8.2 ¢ /kWH (on shore)
 - 2030 Goal: <6 ¢ /kWH</p>

Shell Moulds / Shear Webs Installed / Blade Assembly Source: TPI Composites

Is there a better way to make blades?

Project Objective

.

•

•

.

Evaluate the feasibility of automation processes for the cost effective production of wind turbine blades

Technology Approach

Project Tasks

- 1. Materials investigations
 - Database analysis
 - Analysis of performance variables (DOE)

2. Manufacturing and automation

- Process benchmarking
- Concept development

3. <u>Process development</u>

- Material process characteristics and prepreg production
- Surrogate process trials
- Laminate production and testing
- 4. Predictive analysis (FEA)
- 5. <u>Feasibility assessment</u>
 - Technical feasibility
 - Economic feasibility

Covered by PPG during Sandia Blade workshop 2010

Covered by PPG during Sandia reliability workshop 2011

Manufacturing and Automation: Process Benchmarking

Manufacturing and Automation: Concept Development

- Increase material placement accuracy
- Elimination of wrinkles
- Reduced scrap generation
- Higher throughput in less floor space

Manufacturing and Automation: Machine Capabilities

- Single skin mould lay-up tool or two spar cap layup tools
- Capability to produce a blade skin 2.5M minimum root diameter and up to 60M in length
- High speed material processing
- Up to 64 material spools
- Auto-splicing capability
- Fiber placement head

Materials Evaluation and Testing: Materials Evaluation Matrix

Materials Evaluation and Testing: Process Trials with Automated Equipment

Fiber Placement (FP)

Materials Evaluation and Testing: Static Properties

1500 Fiber Placement Materials (ed 1400) (Hornau 1300) 1200) reference Line 1100-Technology Today Ŧ 1000 Potential for 15% increase UD slit tape UD Towpreg 1 UD Towpreg 2 Dry wound roving UD Noncrimp fabric UD wide tape stiffness with existing materials Variability Chart for Tensile Modulus (GPa) 52 **Fiber Placement Materials** Tape Placement 50 ÷ ensile Modulus (GPa) 48 reference 46 44 42 Technology Todav 40 38 Dry wound roving UD Noncrimp fabric UD slit tape UD Towpreg 1 UD Towpreg 2 UD wide tape Fiber Placement Infusion Tape placement Material Designation within Process

Variability Chart for Tensile Strength (MPa)

Expertise you trust. Solutions you demand.™

Materials Evaluation and Testing: Fatigue Performance

Tension-Tension Fatigue: R=0.1 F=5Hz

S-N Fatigue Curve

Predictive Analysis:

Expertise you trust. Solutions you demand.™

Objective

- Determine process/property influence on structural performance of a full blade.
- Preprocessing in NUMAD (33 m blade S818)
- Boundary conditions, solving and post processing in ANSYS[®]
- Input material property data generated experimentally by PPG
 - Effect of fiber properties on blade stiffness, weight

Blade Component	Weight (Kg)	%
Spar Cap (Low Pressure Surface)	1437	30%
Spar Cap (High Pressure Surface)	1457	31%
Shear Web (Forward)	53	1%
Shear Web (Aft)	55	1%
Skin (Low Pressure Surface)	242	5%
Skin (High Pressure Surface)	238	5%
Root	1251	26%
Total Blade	4733	100%

ANSY

08:41:22

2010

Predictive Analysis: Blade Finite Element Analysis

NODAL SOLUTION

STEP=1	
SUBI = 1	
TIME=1	
USUM	(AVG)
RSYS=0	
DMX = .	506204
SMX =.	506204

- 1. Determine required stiffness from base model
- 2. Increase blade length
- 3. Replace material properties with new materials
- 4. Determine new stiffness and compare to base model

Predictive Analysis: COE Calculation Methodology

Project Assumptions

Variable	Value	
Project size	60 MW	
Wind speed range	13-17mph (Class 4)	
Turbine size	1.5 MW, 33 meter long	
	blade	
Net capacity factor	30%*	

$COE^* = (ICC \times FCR)/AEP + AOE$

*NREL/TP-500-40566 2006

Predictive Analysis: COE Findings

- Advanced manufacturing of wind blades with innovative glass fiber composites can enable increased generation capacity and decrease COE
- Asserts the importance of automation as high performance alternative to resin infusion

% Increase in blade length	% Increase in weight	% Increase in produced energy output	% Decrease in COE
3.76%	3.5%	7.7%	3.57%

COP JUNE

Feasibility Assessment: Technical Feasibility

- Surrogate process trials:
 - Material quality parameters:
 - Tack, fuzz, width control, flatness, ease of release
 - Material performance parameters:
 - Minimum static and dynamic performance
- Technically feasible approach for production of high fiber volume fraction composites
 - Improved static and dynamic properties (higher stiffness, higher strength)

Feasibility Assessment:

Sample Material Specification

Development

Fiber Glass Roving	PPG HYBON 2026			
Sizing chemistry	E	Epoxy compatible roving		
Fiber diameter	17um	+/- 3um		
LOI	0.7%	+/- 0.2		
Linear Density	2400TEX	+/- 200		
Resinsystem	OOA grade epoxy	,		
cure temp	80-120 C			
cure time	5H			
Prepreg Resin Content	40%	+/- 1%		

Class A	Preimpregnated slit tape		
Manufacturing Process		Automated Fiber Placement – Slit tape	
Tack Level	Medium Tac	k - self adhesion to tooling surface, adequate release from separation media	
Separation media	Siliconized paper, PE or equivalent.		
width	12mm	+/- 0.7 mm	
Thickness	0.35mm	+/- 0.05 mm	
Class B	Unidirectional Towpreg		
Manufacturing Process		Automated Fiber Placement – Towpreg	
Tack Level	Medium Tack - self adhesion to tooling surface, adequate release from separation media		
Separation media	No separation media required if appropriate tack is achieved		
width	12mm	+/- 0.5 mm	
Thickness	0.35mm	+/- 0.07 mm	

Feasibility Assessment:

Sample Material Specification Development (cont'd)

Roll diameter

Material build up diameter of core

101.6 mm OD or greater on 76mm core

76.2mm

Package Length

25.4 cm long centered on core, helically wound

Minimum Performance Requirements				
Tensile Strength - X	1350 MPa	min	ISO 527-5	
Tensile Modulus - X	48000 MPa	min	ISO 527-5	
Fiber Weight Fraction	76.5%	+/- 1%	ISO 1172	
Tensile Strength - Y	50MPa	min	ISO 527-4	
Fiber Volume Fraction	59%	+/- 1%	ISO 1172	
Fatigue Performance	See slide 16 (Tension-Tension R=0.1 Iaminates (slit tape and Towpreg1)	.F-5Hz) 2 mm	n thick	

Feasibility Assessment: Economic Feasibility

Method 1

- Shell:
 - Vacuum Infusion
- Spar cap:
 - Vacuum Infusion
- Root:
 - Wet layup/Infusion

Method 2

- Shell:
 - Vacuum Infusion
- Spar cap:
 - Automation
- Root:
 - Wet layup/Infusion

Method 3

- Shell:
 - Automation
- Spar cap:
 - Automation
- Root:
 - Automation

Feasibility Assessment: Procedure

- (BOM) from the FEA model
- Total man-hours per blade (Direct Labor)
- Production time per blade
- Capital equipment
- Depreciation and overhead

Feasibility Assessment: **BOM – Infusion/Automation**

Method 1 BOM Total \$53,836

\$1,490. \$408.80 Glass Fabric Glass Scrap \$9,934.58 \$2,664 Resin Resin Scrap Core Core \$53,275.32 Core Scrap Adhesive Adhesive Scrap Studs Studs

Method 3 BOM Total \$69,420

Feasibility Assessment:

BOM and Manufacturing Time

	Fabric Infusion Method 1	Automated Spar Cap Method 2	Fully Automated Production Method 3
BOM (USD \$)	\$53,836	\$60,838	\$69,421
Production time per blade (hrs)	29	29	12
Total man-hours per blade	770	658	331
Total direct labor cost per blade (\$)	\$30,800	\$26,320	\$13,240

Feasibility Assessment: Man-hour Distribution

Feasibility Assessment: Facility Requirements

Feasibility Assessment:

Feasibility Assessment:

Total Blade Cost and Profits

Feasibility Assessment: Projected Income Statement

Feasibility Assessment: Financial Analysis

t = 10 years. Cash Flow projections

Economically Feasible

Assumptions on model

3% inflation, 35% tax rate, replacement tooling costs added at year 5 *Kahn, 1995. Comparison of financing costs for wind turbine and fossil power plants. Lawrence Berkeley Lab

Feasibility Assessment: Generation Observations

- Integration of material and process is key to optimize manufacturing
- Automation technology has potential for increased performance and manufacturing efficiency, technology is deemed feasible
- Mechanical property improvements could enable COE reductions
- Cost model shows potential payoff for wind blade producers who adopt automation through the complete manufacturing process
- Further material cost reductions (mainly through lower cost prepreg) can enable even higher ROI for automation processing

Industry Trends

Ingersoll to build wind blade demonstrator

With help from a \$5 million grant, Ingersoll will invest more than \$12 million to build an automated wind blade demonstrator based on the company's composite fiber placement technology.

| Posted on: 4/26/2010 Source: Composites World

👌 🗗 🔛 🚍 🚺 🤇 🕐

BLADE COMPOSITES MANUFACTURING

BASED ON EXISTING AEROSPACE TECHNOLOGY

FEATURES INCLUDE:

- Mold release application
 Gel coat application
- Automoted material trimming
- Comprehensive system for grinding and application of adhesives, etc.
- Interface to production system: e.g. infusion, curing and mold closing
- Centralized software control with simplified user interface
- Brood range of material applications:
 Prepreg/dry tows
- Prepreg/ary rows
 Complete range of fiber materials (carbon/glass)
- Lay-up rates of up to 1,500 lbs./hr.

Winner: GAMESA Innovation & Technology (Spain) Partner: Grupo M. Torres (Spain)

Gamesa and M. Torres have developed a new blade technology with a revolutionary, 100% automated manufacturing process. The project focused on the following critical aspects: Blade design, structure materials adapted to the automated process, introduction of innovative tip and root solutions that will improve the aerodynamic performance of the blade (higher production capacity of the wind turbine), automatic lamination of dry glass fibre tape (tap developed by Gamesa and M.Torres).

Worldwide Products

Worldwide Brands

- Direct Rovings
- Chopped Fibers 🐝 🗈
- Mats & Rovings
- Yarn
- Paper Dry Chop
- Long Fiber Thermoplastics (LFT)
- Mil-Tough[®] Lightweight Protective Panels
- Insulation and Processed Fibers

Engineered for Performance

Acknowledgements

<u>PPG Industries</u>: Sandeep Vennam, Jim Watson, Cheryl Richards, Terry Hart, and Scott Benton

MAG: Joseph Jones, Mike Grimshaw, Jim Watkins, and Milo Vaniglia

<u>U Maine</u>: Jacques Nader, Habib Dagher

"This material is based upon work supported by the Department of Energy under Award Number(s) [DE-EE0001373)]."

Disclaimer: "This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Thanks for your attention!

http://www.ppg.com/glass/fiberglass/markets/Pages/windenergy.aspx

juan.serrano@ppg.com

