Preliminary Performance Assessment of Deep Borehole Disposal of Radioactive Waste

Bill W Arnold, Patrick V. Brady, Geoff A. Freeze, Peter N. Swift, and Joshua S. Stein

PSAM10 Conference
Seattle, Washington

June 9, 2010

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
• Deep borehole disposal concept
• Potential viability and safety of the concept
• Thermal, hydrologic, and geochemical modeling
• Preliminary safety assessment analyses
• Research on unresolved technical issues
Deep Borehole Disposal Concept
Disposal Concept Viability and Safety

- Crystalline basement rocks are relatively common at depths of 2 to 5 km
- Existing drilling technology permits construction of boreholes at a cost of about $20 million each
- Low permeability and high salinity in the deep continental crystalline basement suggest extremely limited interaction with shallow groundwater resources
- Geochemically reducing conditions limit the solubility and enhance the sorption of many radionuclides
- Disposal could occur at multiple locations, reducing waste transportation costs and risks
- The deep borehole disposal concept is modular, with construction and operational costs scaling approximately linearly with waste inventory
- Disposal capacity would allow disposal of projected U. S. spent nuclear fuel inventory in about 950 boreholes
Thermal Conduction

- Assumed disposal of a single PWR fuel assembly per waste package
- Thermal output for an average fuel assembly that has been aged for 25 years
- Results indicate a maximum temperature increase of about 30°C at the borehole wall
- Significant temperature increases do not persist beyond 100 to 200 years
- Results show a temperature increase of about 125 °C for disposal of vitrified waste from reprocessing
Coupled Thermal-Hydrologic Model

- Granite was assigned a permeability of $1 \times 10^{-19} \text{ m}^2$
- Sealed borehole and disturbed bedrock surrounding the borehole were assigned a value of $1 \times 10^{-16} \text{ m}^2$
- Results indicate upward vertical flow in the borehole driven primarily by thermal expansion, and not by free convection
- Upward flow (about 1.5 cm/year) persists for about 200 years at the top of the waste disposal zone
- Lesser upward flow (flux of up to 0.35 cm/year) occurs for about 600 years in the borehole at a location 1000 m above the waste
Geochemical Behavior

- Typical geochemical conditions at depths of greater than 3 km are Na-Ca-Cl brine of 2-3 M/L, pH of 8-9, and Eh of ~ -300 mV
- Solubility limits for many radionuclides are very low because of reducing conditions
- Most radionuclides are also subject to significant sorption onto host rocks and retardation during aqueous transport, with the notable exceptions of 129I and 14C

<table>
<thead>
<tr>
<th>Radioelement</th>
<th>Solubility-limiting phase</th>
<th>Dissolved concentration (M/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am</td>
<td>Am$_2$O$_3$</td>
<td>1×10^{-9}</td>
</tr>
<tr>
<td>Ac</td>
<td>Ac$_2$O$_3$</td>
<td>1×10^{-9}</td>
</tr>
<tr>
<td>C</td>
<td>None</td>
<td>Not limited</td>
</tr>
<tr>
<td>Cm</td>
<td>Cm$_2$O$_3$</td>
<td>1×10^{-9}</td>
</tr>
<tr>
<td>Cs</td>
<td>None</td>
<td>Not limited</td>
</tr>
<tr>
<td>I</td>
<td>Metal iodides</td>
<td>Not limited</td>
</tr>
<tr>
<td>Np</td>
<td>NpO$_2$</td>
<td>1.1×10^{-18}</td>
</tr>
<tr>
<td>Pa</td>
<td>PaO$_2$</td>
<td>1.1×10^{-18}</td>
</tr>
<tr>
<td>Pu</td>
<td>PuO$_2$</td>
<td>9.1×10^{-12}</td>
</tr>
<tr>
<td>Ra</td>
<td>RaSO$_4$</td>
<td>Not limited</td>
</tr>
<tr>
<td>Sr</td>
<td>SrCO$_3$, SrSO$_4$</td>
<td>Not limited</td>
</tr>
<tr>
<td>Tc</td>
<td>TcO$_2$</td>
<td>4.3×10^{-38}</td>
</tr>
<tr>
<td>Th</td>
<td>ThO$_2$</td>
<td>6.0×10^{-15}</td>
</tr>
<tr>
<td>U</td>
<td>UO$_2$</td>
<td>1.0×10^{-8}</td>
</tr>
</tbody>
</table>
• Radial 2-D model of groundwater pumping and contaminant transport was constructed for the freshwater system in the upper 2000 m of the geosphere.
• Radionuclide mass would arrive more quickly to the higher-capacity pumping well, but dilution would be greater.
• Quantitative estimates of delay and dilution were incorporated into the performance assessment calculations.
Preliminary Performance Assessment

- Single release scenario analyzed: Upward flow in a single borehole and disturbed zone – release to a pumping well
- Assume 400 spent fuel assemblies from commercial pressurized water reactors (a reasonable bounding case for other high-level waste forms)
- Assume rapid corrosion and degradation of waste containers
- Dissolved solubility limits of radionuclides estimated for thermal – chemical conditions in the borehole
- Decay and ingrowth of 31 radionuclides included
- One-dimensional analytical solution for the advection – dispersion equation with sorption used for the analysis
- Delay and dilution from pumping included
- Biosphere dose conversion factors from the Yucca Mountain project used to calculate radiological dose
Performance Assessment Results

• Peak radiological dose to an individual using contaminated groundwater from the hypothetical pumping well was calculated as 1.4×10^{-10} mrem/year

• The only radionuclide contributing to the calculated dose is 129I, which has high solubility and is nonsorbing

• Peak dose was calculated to occur about 8,000 years following waste emplacement

• For comparison, the International Atomic Energy Agency recommends a postclosure dose limit of 0.3 mSv/year (30 mrem/year)

• Preliminary analyses also indicate that nuclear criticality, molecular diffusion, and thermally induced hydrofracturing would not impact the safety of the disposal system
Key Technical Issues

- Long-term behavior of borehole seals
- Modeling of coupled thermal-hydrologic-mechanical-chemical behavior near the borehole
- Compounds that sorb/sequester radionuclides (in particular, radioactive iodine) in the borehole or seals
- More detailed performance assessment analyses:
 - Full consideration of features, events, and processes relevant to potential release pathways and scenarios
 - Incorporation of more detailed modeling, including coupled processes, in particular
 - Scaling up from single to multiple boreholes
- Criteria for site selection and borehole characterization
- Operational and engineering analysis of waste emplacement process
- More detailed cost analyses
Publication of Preliminary Results

SANDIA REPORT
SAND2009-4401
Unlimited Release
Printed August 2009

Deep Borehole Disposal of High-Level Radioactive Waste

Patrick V. Brady, Bill W. Amoski, Geoff A. Freeze, Peter N. Swift, Stephen J. Bauer,
Joseph L. Kanney, Robert P. Rechard, Joshua S. Stem

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

Approved for public release; further dissemination unlimited.

Sandia National Laboratories
Summary and Conclusions

• Deep borehole disposal of spent nuclear fuel and high-level radioactive waste is a potentially viable waste disposal concept

• Modeling of thermal conduction and coupled hydrothermal processes indicate acceptable increases in temperature and minor thermally induced groundwater flow

• Preliminary performance assessment analyses indicate that dose to a hypothetical human receptor would be limited to ^{129}I and would be negligible

• Several key unresolved technical issues have been identified and research is being pursued on several of these issues

• We recommend that a full-scale pilot project be undertaken to fully explore the viability of this waste disposal concept