

Integrity Enhancing

Protocols: Performance

and Recommendations

for Nuclear Systems

Prepared for
US Department of Energy

Romuald Valme1, Adam Beauchaine1, Minami Tanaka1, Christopher

Lamb1

1Sandia National Laboratories

September 2024

SAND2024-12102

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@osti.gov
 Online ordering: http://www.osti.gov/scitech

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5301 Shawnee Rd
 Alexandria, VA 22312

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.gov
 Online order: https://classic.ntis.gov/help/order-methods/

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/

ABSTRACT

In today’s communication landscape there are multiple technologies and protocols used for
communication between end devices. Within security paradigms for these protocols, integrity
management is a common goal of system designers. Communication protocols focused on
maintaining message integrity can provide assurance that some received data has not been altered or
tampered with. While integrity is often coupled with confidentiality in protocol design, this analysis
focuses on an evaluation of only integrity protocols. This report outlines various ways message
integrity may be preserved with respect to high performance operational technology (OT) systems.
It describes a series of experiments and an evaluation framework used to evaluate the performance
of the identified integrity approaches regarding common system design goals. Finally, it addresses
the testing environment utilized and closes the report with a summary of experimental results.

ACKNOWLEDGEMENTS

The team wishes to acknowledge Department of Energy office of nuclear energy (DOE-NE) for
supplying financial support and resources to this project. This project was funded by DOE-NE
under contract number NT0111000/234155. The team also wishes to thank Ben Cipiti, Katya
Leblanc, and Dan Warner for their advocation, guidance, and review of this project.

CONTENTS

Abstract ... 3

Acknowledgements .. 4

Executive Summary ... 9

Acronyms and Terms .. 11

1. Introduction ... 12

2. Background .. 14
2.1. History .. 14
2.2. Public Key Cryptography and Digital Signatures ... 14
2.3. Hashing and Message Authentication Codes (MACs) .. 15
2.4. Checksums ... 17
2.5. Block Cipher Integrity Models .. 18
2.6. Existing Approaches .. 19

2.6.1. Multiple Signature Approaches ... 19
2.6.2. Elliptic Curve (Lightweight) Cryptography ... 20
2.6.3. Post-Quantum Cryptographic Schemes .. 25

3. Framework Specification and Testbed Development ... 28
3.1. Selected Protocols for Testbed Evaluation ... 28
3.2. Operational Technology Evaluative Framework ... 29
3.3. Proposed Testbed Design and Construction .. 31

4. Protocol Testing Methodology ... 32
4.1. Protocol Testing Tool .. 32
4.2. Testing Conditions and Result Formatting ... 32

5. Current results ... 34

6. Conclusion ... 38

7. References .. 40

Distribution ... 44

LIST OF FIGURES

Figure 1: Digital Signature Process [4] .. 15
Figure 2: HMAC Algorithm ... 16
Figure 3: GCM Operation within the AES Cryptosystem... 18
Figure 4: Multisigner Process [8] ... 19
Figure 5: Results for Variable-Base and Fixed-Base Scalar Multiplication, Static ECDH, and Fully

Ephemeral ECDH Key Exchange [16] ... 22
Figure 6: Key Generation Time Required (in seconds) of RSA, DH, P256, Curve2219, and

FourQ [18] ... 23
Figure 7: Key Generation Time Required (in seconds) of ECC only [18] .. 23
Figure 8: Secret Exchange Time Required (in seconds) of RSA, DH, P256, Curve2219, and

FourQ [18] ... 24
Figure 9: Secret Exchange Time Required (in seconds) of ECC only [18] ... 24
Figure 10: An Example Low Dimension CVP Solution [21] .. 26
Figure 11. NIST PQC Round 2 Network Performance
Error! Bookmark not defined.
Figure 12. Average Key Generation Running Time
Error! Bookmark not defined.
Figure 13. Average CPU Usage
Error! Bookmark not defined.
Figure 14. Average Memory Usage
Error! Bookmark not defined.
Figure 15. Average Encapsulation Time
Error! Bookmark not defined.
Figure 16. MAC RTT Times 34

LIST OF TABLES

Table 1: Average Protocol Scores for Framework Components .. 10
Table 2: Framework Metrics and Groups .. 30

This page left blank

EXECUTIVE SUMMARY

Information and communication data are ubiquitous in modern digital systems. This data often
contains critical instructions and commands for devices in Operational Technology (OT)
environments. OT hardware is highly utilized in Advanced Reactor (AR) systems. The devices in AR
systems leverage various protocols to carry critical data for control, read, and actuate actions within a
reactor. The integrity of this data is critical for the safety and operation of these systems. Adversaries
are aware of this and may target these devices by distorting the instructions being sent across the
network. To prevent these adversaries from causing harm, systems that verify the integrity of the
data being transmitted are necessary. Integrity Enhancing Protocols (IEP) can accomplish this task
through a variety of algorithms. Throughout this paper, these protocols and the diversity of
approaches that exist are explored.

Section one introduces integrity protocols and their use cases. This section outlines the motivation
for these protocols and describes how OT devices and advanced nuclear reactor environments
benefit from the incorporation of these technologies. With the appropriate algorithm, data can be
sent in clear text with a short verifying message tag appended to it. This would result in less resource
utilization and cost for a reactor system than combined approaches in which integrity is provided
alongside confidentiality or authenticity.

Section two begins a detailed description of various categories of integrity protocols. Many features

of these protocols are explored such as their pros and cons and implementation. This section

outlines the underlying cryptographic techniques that underly many protocols. These topics include

digital signature, public key cryptography, hashing, and message authentication codes (MACs). After

this each category of protocol is discussed. In each category various protocols and corresponding

details are outlined.

Section three dives into the methodology for testing protocols. It outlines the novel framework

developed to analyze protocols. It also reviews the criteria used to select protocols to test. The

framework is based on four metrics that were decided on based on literature reviews of evaluation

metrics. These metrics are protocol running time, endpoint storage, hardware performance, and

NIST security level. This section describes these metrics in greater detail. Many of these protocols

exist in network environments with constant communications traffic. Details on how these

environments can be implemented are also given. Advanced reactors benefit from the evaluation of

protocols through a robust framework such as the one presented in section three.

Section four describes how the chosen protocols were implemented for testing. Here
implementation questions regarding hardware and libraries are addressed. What benefits and
advantages are derived from the team’s selection in comparison to others. Testing tool
implementation and data retrieval strategies are discussed. Finally, the virtualization platform and
network topological schemes are discussed.

Section five provides an analysis for the collected data. In this section the team describes key

findings from the chosen implemented protocols. The results show the lightweight nature of

protocols such as ECDSA and MACs with their faster key generation time and lower CPU usage

compared to standard algorithms such as RSA. This result can also be viewed in the table 1. This

table shows a compiled form of averaged results per protocol. Timing metrics are recorded in MS,

whereas spatial metrics are recorded in bytes. CPU and RAM measurements are recorded as

percentages of total usage while the program was active i.e., CPU 2.3 = 2.3% usage over a testing

operation.

Out of all the algorithms sampled, MAC had the highest performance for strict integrity provision.

This performance can be attributed to the absence of a public key cryptosystem in favor of a shared

secret architecture. Reactor environments which mostly require data integrity can save on resources

and costs by avoiding the usage of public key algorithms. The range of performance in post-

quantum algorithms is seen by the faster round trip time of the lattice-based Dilithium in

comparison with the hash-based Sphincs+ algorithm. By incorporating algorithms such as Dilithium

AR systems looking for quantum resistance would optimize CPU and memory usage thus saving

operating costs. The findings provided in the results section give operators and engineers the

information they need to properly implement integrity assurances tailored to their environment and

without the additional complexity of using confidentiality or authenticity measures. Integrity

protocols can also function as an active component of a Defensive Cyber Security Architecture

(DCSA), integrating into secure elements and devices throughout a network.

ECDSA (secp256k1)

KeyGen (MS) Encap (MS)
Decap
(MS)

Key Size
(Bytes)

CS Size
(Bytes) CPU (%) RAM (%) RTT (MS)

4461.545 72.49505 548.6535 416 48 1.261276 6.969479 806.3168317

ECDSA (Brainpool)

KeyGen (MS) Encap (MS)
Decap
(MS)

Key Size
(Bytes)

CS Size
(Bytes) CPU (%) RAM (%) RTT (MS)

12698.62 151.1782 1738.059 416 48 1.836975 8.952559 2009.128713

RSA

KeyGen (MS) Encap (MS)
Decap
(MS)

Key Size
(Bytes)

CS Size
(Bytes) CPU (%) RAM (%) RTT (MS)

77162.01 269.7624 403.7129 72 48 4.438073 7.04877 941.4356436

Dillithium

KeyGen (MS) Encap (MS)
Decap
(MS)

Key Size
(Bytes)

CS Size
(Bytes) CPU (%) RAM (%) RTT (MS)

226.7327 271.703 287.9109 72 48 1.558841 5.973637 1249.19802

MAC

KeyGen (MS) Encap (MS)
Decap
(MS)

Key Size
(Bytes)

CS Size
(Bytes) CPU (%) RAM (%) RTT (MS)

78.71287 3.980198 17.85149 24 40 1.474 5.973583 825.6732673

Sphincs+

KeyGen (MS) Encap (MS)
Decap
(MS)

Key Size
(Bytes)

CS Size
(Bytes) CPU (%) RAM (%) RTT (MS)

9299.03 326.198 5933.525 72 48 7.865583 6.878221 6635.990099

ElGamal

KeyGen (MS) Encap (MS)
Decap
(MS)

Key Size
(Bytes)

CS Size
(Bytes) CPU (%) RAM (%) RTT (MS)

2131484 205.0792 867.6634 72 48 19.31755 6.70472 1278.257426

Table 1: Average Protocol Scores for Framework Components

ACRONYMS AND TERMS

Acronym/Term Definition

IoT Internet of Things

OT Operational Technology

AR Advanced Reactor

MAC Message Authentication Code

RAM Random Access Memory

NIST National Institute of Standards and Technology

DCSA Defensive Cyber Security Architecture

TPM Trusted Platform Module

GCM Galois Counter Mode

RSA Rivest–Shamir–Adleman (Public Key Cryptosystem)

ECDSA Elliptic Curve Digital Signature Algorithm

FIPS Federal Information Processing Standards

PQC Post Quantum Cryptography

CPU Central Processing Unit

KVM Kernel-based Virtual Machine

QEMU Quick Emulator

VM Virtual Machine

VCPU Virtual Central Processing Unity

AES Advanced Encryption Standard

SHA Secure Hashing Algorithm

1. INTRODUCTION

In recent years, the complexity of operational technology (OT) systems has grown considerably.
This has coincided with a rise in cybersecurity threats targeting this new, larger attack surfaces of OT
environments. Within some disciplines which incorporate OT, focus on cybersecurity infrastructure
is often limited, leading to OT environments with outdated security provisions. [1] These
environments can often be unprepared to meet the challenges posed by cyber-attacks, based on the
speed at which these attacks are evolving [2]. Within OT security infrastructure, the paradigm of
integrity has been noted as particularly important, given the capacity for false data injection to trigger
unwanted, potentially dangerous events if physical behavior is impacted [2]. Integrity is often
coupled with additional security goals, such as authenticity as is seen in digital signatures.
Confidentiality guaranteeing ciphers may additionally include integrity as a provided service. This
report focuses uniquely on integrity-guaranteeing protocols, while this includes those that offer
additional security provisions, integrity is the solely evaluated goal. This is due to the theoretical low
cost of integrity implementation, as well as the benefits to OT systems that come with such
provisions [2].

System security engineers need a clearer understanding of the current landscape of integrity
guaranteeing protocols for OT infrastructure. They need an analysis of current approaches to
integrity and what performance and security impacts such approaches have on OT systems. This
report provides a clear background of modern integrity protocols and how they are implemented
within OT systems. It documents the most relevant techniques and practices and how they may be
applied within OT systems with respect to protocol performance, technical complexity, and
implementation costs. It substantiates these observations with real result data from unique protocol
implementations, using metrics designed for OT systems.

Such implementations will be highly valuable in OT environments supporting Advanced Reactors
(AR) systems. Protocol performance is of high relevance within AR systems, due to the time-critical
nature of applications receiving real-time physics data. Due to low theoretical overheads of integrity-
guaranteeing protocols, AR systems could benefit from a “low-cost” layer of an important security
provision. This report aims to provide actionable conclusions on implementation guidelines for AR
systems, among a broader OT paradigm.

To explore the landscape of integrity-guaranteeing protocols and strategies, this report discusses the
history and growing need for integrity within modern OT system architectures. It identifies and
explores current standards of integrity protocols, as well as novel approaches being adopted within
modern secure systems. It additionally discusses technical and implementation details of each of the
integrity systems or paradigms presented, as well as their capacity to integrate into existing OT
systems. The diversity of integrity protocols presented allows for a plethora of variations in
architecture. Designers can introduce systems that focus primarily on integrity, where data is passed
in clear text with a message tag appended which with the appropriate algorithm can verify the
integrity of the data. This design can reduce resource utilization and cost. It proposes the usage of a
test environment to evaluate performance of a smaller subgroup of protocols determined as most
relevant to OT systems. It records and highlights the performance factors of this subgroup using a
novel protocol analytic tool and presents visualized views of the resulting data outputs. Finally, this
report highlights various attributes and features that separate integrity protocols, such as integrity at
rest or integrity in transit.

Evaluated protocols are referred to by public key cryptographic scheme names. Within the context
of this work, all public key signature schemes are assumed to reference digital signature algorithms.
For example, an evaluation of RSA refers to the RSA digital signature implementation. Due to the
limitation of analysis to integrity protocols, alternative uses for public key architecture, such as secret
establishment or one time encryption, are not discussed in this work. Protocols that do not leverage
public key schemes are specified when mentioned to avoid confusion. Additionally, due to the
separation of integrity and confidentiality for experimentation, all message data is transmitted in
clear text during experimentation.

2. BACKGROUND

The background of this work discusses integrity guaranteeing tools and techniques, as well as prior
work which incorporates them. It discusses the history and motivations behind integrity in modern
secure system design, as well as cryptographic approaches for integrity management, and how they
may be used to guarantee integrity of information systems. For each of these approaches, special
attention is given to their history and potential implementations within an OT system, considering to
the unique requirements relating to performance and compatibility that OT environments possess.
Each of these techniques has been selected based on relevance to OT integrity management
challenges. Additional discussion is included regarding techniques applied to both data in transit as
well as storage, including digital signatures, message authentication codes, hashing, data checksums,
and Galois counter mode for block ciphers. Finally, implementation strategies for these techniques
within existing systems are discussed, with a specific focus given to OT systems and infrastructure.

2.1. History

In Cryptography, integrity ensures that the message received is the same as what the sender
transmitted. It guarantees that the data has not been altered by some nefarious actor or system error.
The usage of the term integrity was pioneered and formally defined in the paper A Comparison of
Commercial and Military Security Policies [3]. Integrity provisions are derived from the classical “subject-
object” model of access control, in which constrained data assets must have a dedicated, controlled
transformation procedure to be written to. This is combined with regular checks of data
infrastructure to ensure no illegitimate changes have been made to data assets. The paper also
defines unconstrained data assets as those which may be modified with simple read/write primitive
operations, noting that allowing for data alterations in this manner represents a threat to integrity.

There are various techniques that can be leveraged to provide integrity in modern systems. One of
these techniques is the digital signature, which also provides authenticity protection. Digital
signatures allow you to verify that a message has been sent by the expected party. In 1976 Whitfield
Diffie and Martin Hellman devised the idea of a digital signature. This idea however was incomplete.
It was missing an asymmetric encryption algorithm. A year later Ronald Rivest, Adi Shamir, and Len
Adleman developed the RSA algorithm which would enable the production of a rudimentary digital
signature leading to the first digital signature used, in Lotus Notes, in 1988.

2.2. Public Key Cryptography and Digital Signatures

Public-key cryptography enables digital signatures. In public-key cryptography everyone has their
own unique encryption and decryption key. During communication someone would encrypt a
message to a receiver with the receiver’s public key which only the receiver could decrypt with their
private key. However, in digital signatures the process is reversed. The sender’s private key is used to
encrypt or sign a message which then everyone can validate the origin of using the sender’s public
decryption key. The figure below shows an example communication involving a digital signature
between two different parties Alice and Bob. The figure shows how Bob must sign the message x
using his private key. It also shows how the public key can be used to verify the source of the
message.

Figure 1: Digital Signature Process [4]

Digital signatures ensure data integrity. If even a single bit of the message in transit is altered by an
adversary, the decrypted result will be vastly different. These algorithms typically have multiple
phases. The phases typically include key generation, key distribution, document hashing, document
signing, and signature verification. In key generation the public key algorithm is selected, and the
public and private key are generated based on various parameters. The keys are then securely
delivered and installed onto their corresponding systems. The above figure shows the message x
being signed, but the length of the message may pose issues in transmission. It is not scalable to
have the entire message x being signed and transmitted.

To mitigate this problem, one must select and utilize a hashing algorithm. The hashed document is
then encrypted using the private key in a process known as signing and once delivered to the
receiver is decrypted using the decryption key through a process known as verification. The goal of a
digital signature is to guarantee data integrity and authenticity. The data cannot have been tampered
with and must have originated from the holder of the private key.

2.3. Hashing and Message Authentication Codes (MACs)

As seen in the architecture of digital signatures, the usage of cryptographic hash functions within
integrity preserving communication schemes has been widespread. Any known hash function shared
between two communication participants may serve this purpose in a simple manner. By hashing the
original message and appending the output to the data sent, the receiver may apply the same hash
function on the original message and compare the results. If the results are, assuming a hash
function of sufficient preimage resistance, the recipient may verify the integrity of the data.
Cryptographic hashing functions do not innately provide an authentication equivalent mechanism,
or encryption in transit. As such, they are typically only used as components in secure
communication schemes.

Message authentication codes (MAC) refers to a system of message authentication. Through the
usage of a shared secret key k, MAC implements a signing algorithm that outputs a unique tag t on
the input of k and message m. This tag is then appended to the original message. Because a trusted
recipient also has access to the shared secret key k, they may perform an identical procedure to
attain the tag t, which verifies the sender is a trusted keyholder.

MAC is commonly leveraged in combination with cryptographic hash functions to provide
authentication and integrity in secure communication. Such schemes are referred to as hash-based
message authentication codes (HMAC). Within an HMAC system, both parties derive two secret
keys k1 and k2 from the original key k. Two rounds of message concatenation and hashing are then
performed, with k1 and k2 being used for each round key. The first round of the algorithm
generates an internal hash that is then passed as input to the next round, the output of this round
creates the final HMAC code as shown below in figure 2.

Figure 2: HMAC Algorithm

The repeated rounds of HMAC allow for strong resistance to hashing length extension attacks. This
procedure is repeated by the recipient, thereby guaranteeing the integrity of data and identity of the
sender. The authentication and hashing algorithm must be repeated on a per transmission basis by
both parties for any instance of communication. This has caused several challenges in the
implementation of HMAC on resource constrained systems, such as OT environments. Techniques
in message construction, or in incorporating MAC directly into transfer mechanisms have been
effective in addressing these concerns, shared secret cryptosystem integrity models are discussed
below in section 2.5. This report has selected MACs for evaluation as seen in section 3.1.

2.4. Checksums

A cryptographic checksum allows for generalized integrity measurements within a variety of systems.
As a general-case definition, checksum refers to a small function that outputs a distinct value based
on its input, typically at the binary storage level. This is usually a cryptographic hashing function, but
other techniques, such as modular summation of bits, may be used. (Fletcher’s Algorithm)
Regardless of algorithm, checksum schemes must demonstrate significant diffusion capabilities to be
considered successful. Diffusion refers to the capability for some cryptographic algorithm to
significantly alter ciphertext output when only marginal changes are made to its plaintext input. Such
schemes must also provide pre-image resistance, making it challenging for an adversary to construct
a selected valid output, even after being given some input-output pair.

The usage of cryptographic hash functions as checksums appears in a variety of recent schemes.
They can be leveraged in providing integrity measurements to remote internet files [5], and
providing on-disk integrity measurement of a file system [6]. In both cases, endpoints seeking to
establish integrity must have some secure database of trusted checksum outputs. These may be
compared with new checksum outputs upon starting a workflow and accessing a checksum-guarded
file. This comparison allows for the detection of binary level file modifications thanks to the
diffusion model of cryptographic hash functions. In the case of filesystem checksum schemes,
filesystem objects may be modified to store a set of pointers to block checksum values associated
with the filesystem object. Multi-party checksum schemes are introduced on a per-transaction basis,
to allow for the measurement of the data sent in one network transaction. Examples of such
schemes include message authentication codes (MAC), and hash-based message authentication
codes (HMAC).

Current checksum approaches are related to best practices in cryptographic hashing functions.
Current used schemes include the SHA-2 and SHA-3 families of hashing functions. Legacy
protocols such as MD5 and SHA-1 are no longer used, due to their small collision space and
vulnerability to length extension attacks. In all cases, the usage of checksums for integrity
verification may be a computationally expensive task, especially when used to check every individual
file-system block. [6] The storage of checksum outputs may also present difficulties, particularly in
lightweight systems often found in OT environments. This report addresses these concerns and
provides a specified list of integrity measurement approaches, for filesystem data as well as network
transactions.

2.5. Block Cipher Integrity Models

Among existing communication standards, there have been measures to implement integrity
verification directly into secure multi-party communication models. These include shared secret or
symmetric cryptosystems such as AES. Previously discussed approaches such as MAC or HMAC
may be simply added after ciphertext construction and function in a standard manner for symmetric
cryptosystems, but this significantly increases system complexity and is less computationally efficient
when compared to incorporating integrity measurements directly into the cipher suite. This has
given rise to integrity guaranteeing modes of operation for symmetric block ciphers, which leverage
the natural block encryption mechanisms to create a MAC for an entire multi-block message as a
component of the encryption operation.

The most widely leveraged of these techniques is the Galois Counter Mode (GCM) mode of
operation [7]. A mode of operation refers to a method of linking block encryption operations within
a block cipher, such as AES. By leveraging galois field arithmetical operations across a set of
encrypted blocks, GCM may generate a MAC for an entire message sent between parties, regardless
of the length/number of blocks used. GCM leverages a standard initialization vector (IV) for block
randomization, as well as an additional shared secret key K2. This key is used to perform
multiplicative galois field arithmetic operations across the full set of encrypted blocks to produce a
MAC for the IV and ciphertext values. If either of these is modified in the encryption or in transit,
receiver verification will fail. This enables a single verification procedure to be incorporated as part
of a large data transmission consisting of many blocks.

This MAC is generated in a similar manner to AES finite field arithmetic. On a given input key K2
and irreducible polynomial P, the first block ciphertext output is multiplied in GF(128) mod P.
This resulting output is then XORed with the ciphertext of the second block, with this process being
repeated until reaching the end of the block cipher output, and subsequently multiplied again by K2.
This process is repeated until the final round at the end of the block chain, where two final XOR
and multiply operations are performed for the length of the message and the IV value to produce
the MAC. This process is visualized below in figure 3.

Figure 3: GCM Operation within the AES Cryptosystem

2.6. Existing Approaches

The review of the current state of the art when it comes to integrity enhancing protocols is necessary
for later comparisons of this work. The main concepts and ideas of protocols are presented from
their corresponding research papers. The origin, history, and structure of protocols are presented.
The nature and finer details of these protocols will be uncovered through diagrams and tables. These
protocols are put in environments where they are utilized to protect critical assets and data because
of this the security and vulnerabilities are conferred. Many of these protocols are used today in
various applications, these are described as well as how they could be used in energy facilities.

2.6.1. Multiple Signature Approaches

In circumstances where a document has more than one author there may need to be multiple
signatures applied. In [8], the authors describe various types of multi-signature schemes. A sequential
approach can be taken where a document is hashed and encrypted to produce the first signature.
The resulting signature is then signed in a similar process. This method is iterated until all signers
have been represented. A sequential approach is often valuable when there is an ordered hierarchy
to the authors [9]. An owner signing a document processing an employee’s transfer application may
not sign the document unless the employee has signed first. Routing systems have also employed
sequential schemes through aggregation. This allows them to reduce memory constraints on nodes
that are limited in their resources [10].

 There is also a parallel approach where a document is hashed and encrypted by one signer and then
the same document is run through the signing process for another signer. Two unique signatures are
produced for the same document. One may need this kind of approach in for example an online
shop where multiple parties need to sign the same purchase. However, both approaches suffer from
different drawbacks. One creates multiple signatures which can be tedious to manage and the other
has a complex ordering for its signing and verification. However, there is an approach where you
can have multiple signatories in a single digital signature.

Through a modified El Gamal encryption algorithm a group can have multiple signatories with one
signature. The private key of each signatory is added to the exponent of the encryption, which is
often seen with the Discrete Logarithm Problem (DLP). One does not have to hash their message
multiple times, which can be an expensive operation. The speed of the hash function depends on
how long the input message is and how many blocks the input fits into or takes to hash. One could
instead input their key into the El Gamal algorithm. This approach has been selected for evaluation
as seen in section 3.1.

Figure 4: Multisigner Process [8]

2.6.2. Elliptic Curve (Lightweight) Cryptography

Within OT systems, cryptography comprises various confidentiality, integrity, and availability
protection schemes for secure communication. One category of approaches is often referred to as
“lightweight” due to chip area availability, and energy constraints. Due to requiring less chip space
(RAM) and memory (ROM), lightweight cryptography provides security solutions for low latency
systems with less computing power. Lightweight cryptography plays a critical role in securing OT
protocols due to the resource-constrained nature of OT controllers and field devices. These system
components often have limited processing power, memory, and energy, making traditional
cryptographic algorithms impractical. Lightweight cryptography algorithms are specifically designed
to address these constraints while still providing adequate security. Lightweight cryptography is most
used today for efficient cryptographic algorithms, secure communication protocols, data encryption
and authentication, and device access and access controls. These algorithms are tailored to perform
well on resource constrained IoT devices, ensuring that cryptographic operations can be executed
without draining the device’s limited battery power or overwhelming its processing capabilities. This
section provides an overview of classical algorithms used to secure OT device integrity, with a
special focus given to elliptic curve cryptography.

Lightweight cryptography is also commonly used to encrypt and authenticate data transmitted
between OT devices or stored locally on the devices themselves. For example, lightweight block
ciphers are employed to encrypt sensor data before transmission, ensuring that sensitive information
remains confidential even if intercepted by malicious actors. Regarding integrity, devices often use
lightweight cryptographic protocols like Elliptic Curve Diffie-Hellman (ECDH) or Elliptic Curve
Digital Signature Algorithm (ECDSA) for secure key exchange and message integrity. Additionally,
lightweight authentication mechanisms such as message authentication codes (MACs) or digital
signatures are used to verify integrity and authenticity of data, helping prevent data tampering or
spoofing attacks.

The digital signatures used today can be classified according to the underlying mathematical problem
which provides the basis for their security including schemes like: (1) Integer Factorization (IF)
schemes, which “base their security on the intractability of the integer factorization problem” [11]
(i.e. RSA and Rabin signatures schemes), (2) Discrete Logarithm (DL) schemes, which “base their
security on the intractability of the (ordinary) discrete logarithm problem in a finite field” [11] (i.e.
ElGamal, Schnorr, DSA, and Nyberg-Rueppel), and (3) Elliptic Curve (EC) schemes, which “base
their security on the intractability of the elliptic curve discrete logarithm problem”. [11]

Elliptic Curve Cryptography (ECC), when used in lightweight algorithms for device authentication,
is commonly implemented for key exchange and digital signatures in OT/IoT protocols. This is due
to its strong security properties and relatively low computational overhead. ECC can provide
equivalent security to traditional public key cryptography algorithms like Rivest-Shamir-Adleman
(RSA) and Diffie-Hellman but with smaller key sizes, making it more suitable for resource-
constrained devices. This approach is well suited for “lightweight implementations with a minimal
security level and with a limited hardware overhead”. [12]

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the “elliptic curve analogue of the
Digital Signature Algorithm (DSA)”. [11] The DSA can be viewed as a variant of the ElGamal
signature scheme with a security “based on the intractability of the discrete logarithm problem in
prime-order subgroup of Z*p”. [11] ECDSA key pairs are associated with a particular set of domain
parameters. The public key is a “random multiple of the base point, while the private key is the

integer used to generate the multiple”. [11] Before implementing ECDSA, the type of underlying
finite field (Fq), polynomial or normal basis field representation, type of elliptic curve and elliptic
curve point representation must be considered.

Edward-curve Digital Signature Algorithm (ECDSA) is a modern digital signature algorithm based
on elliptic curve cryptography, designed to be efficient and secure. Signature creation for ECDSA is
“deterministic in nature whereas ECDSA requires high-quality randomness for every signature to be
safe. If it uses low-quality randomness, then an attacker can compute the private key”. [13] It is
commonly used in securing IoT protocols such as MQTT and CoAP for secure communication, as
it offers strong security with smaller key sizes compared to traditional algorithms like RSA.

Elliptic Curve Diffie-Hellman (NIST P-256) is a “prime curve that has been used extensively in
critical infrastructure projects, is being used as the Elliptical Curve Digital Signature Algorithm for
AS-path signing and verification in the BFPSEC protocol”. [14] ECDSA for the curve P-256
delivers 128-bits of security on computationally low-power hardware like IoT devices.

Elliptic Curve Diffie-Hellman (ECDH) for Curve25519 is a “255-bit elliptic curve offering
approximately 128-bit classical security”. [15] ECC implementations for efficient key exchange over
Curve25519 provides secure lightweight public-key cryptography solutions for several applications,
primarily for IoT devices.

FourQ is a “high-performance elliptic curve that provides about 128 bits of security and enables
efficient and secure scalar multiplications”. [16] Implementations based on this curve have shown to
achieve the fastest computations of variable-base, fixed-base, and double-scalar multiplications to
date on a very large variety of x64 and ARMv7-A processors. Overall, results obtained from
different software and hardware platforms consistently report the FourQ is “5 times faster than the
standardized NIST curve P-256 and more than 2 times faster than Curve25519”. [16] Results for
variable-base, fixed-base, static ECDH, and fully ephemeral ECDH key exchange comparing FourQ
to Curve25519 is shown in figure 5.

Figure 5: Results for Variable-Base and Fixed-Base Scalar Multiplication, Static ECDH, and Fully Ephemeral
ECDH Key Exchange [16]

An example of a newly designed multiple-time signature scheme that provides lightweight security
solutions on FourQ curve is the Signer Efficient Multiple-time Elliptic Curve Signature (SEMECS).
SEMECS properties include:

• High computation and energy efficiency at the signer as it only requires “two hash function
calls, a single modular multiplication, and modular subtraction to generate a signature”. [17]

• Compact private key and signatures as it only requires storing a “32-bit private key (that can
be derived from a 16-byte seed with a PRF) and incur an additional 32 Bytes to the message
as the signature, for k=128-bit security level”. [17]

• Open-source implementation and comprehensive analysis as the original researchers had
open-sourced all the implementations for broad testing, benchmarking, and adoption
purposes.

• Provable security with a tight reduction as SEMECS has a “tight reduction to the Discrete
Logarithm Problem (DLP), without the need for the forking lemma, as a Fiat-Shamir type
signatures do”. [17]

Although, despite its merits, this newly implemented multiple-time signature scheme has its
limitations that are inherent to multiple-time signatures. SEMECS limitations include, but are not
limited to, (i) the ability to sign up to a pre-determined k message, but requiring bootstrapping, (ii)
requiring resourcefulness of storage as the public key size is linear with respect to k, and (iii) stateful
signature scheme relying on previous signature states.

In a recent study analyzing the performance of commonly used public-key key exchange protocols
including RSA, Diffie-Hellman, Elliptic Curve Diffie-Hellman (NIST P-256), Curve25519, and
FourQ, in terms of key pair generation and secret key exchange agreement, it can be seen in Figure 6
that RSA is “severely impacted by the long bit length required to maintain the security level target”
[18] and standard “Diffie-Hellman is a bit slower than the elliptic curve variants, which all seem to
be equivalent at this scale”. [18]

Figure 6: Key Generation Time Required (in seconds) of RSA, DH, P256, Curve2219, and FourQ [18]

When considering only the elliptic curve Diffie-Hellman based algorithms, shown in Figure 7, the
standard NIST-256 curve is several times slower than Curve25519 and FourQ.

Figure 7: Key Generation Time Required (in seconds) of ECC only [18]

Regarding the secret value exchange operations, Figure 8 demonstrates that the Diffie-Hellman is
much slower than alternative algorithms and RSA is marginally slower than the elliptic curve
variants.

Figure 8: Secret Exchange Time Required (in seconds) of RSA, DH, P256, Curve2219, and FourQ [18]

Focusing only on the elliptic curve Diffie-Hellman variants, shown in Figure 9, again note that there
are very “tangible performance benefits with the Curve25519 and, especially, FourQ ECDH
schemes”. [18]

Figure 9: Secret Exchange Time Required (in seconds) of ECC only [18]

The performance of lightweight protocols can be leveraged for OT environments to reduce resource
utilization comparable to what is done in IoT systems. Overall, lightweight cryptography is essential
for enabling secure and efficient communication and data exchange in the rapidly expanding
technology ecosystem. ECDSA algorithms have been selected for evaluation as seen in section 3.1.

2.6.3. Post-Quantum Cryptographic Schemes

The emergence of quantum computing as a cryptanalysis tool has seen continuous interest and
research engagement in recent years. [19] Cryptographic schemes designed to resist quantum
computing cryptanalysis are referred to as post-quantum and are more computationally complex to
initiate and verify than traditional cryptography. The development of such schemes poses novel
questions for OT systems in relation to integrity requirements. Since most post-quantum schemes
do not alter existing key-based architecture, they may be viewed as “upgrades” to existing protocols
if implemented correctly. Post-quantum schemes are primarily lattice based (Falcon, Dilithium,
NTRU) or multivariate (LUOV, Picnic, MQDSS). Lattice based schemes may function similarly to
classical schemes in practice, but they are based on the hardness of lattice problems, as opposed to
the hardness of factoring, discrete log, etc. Lattice based schemes have drawn attention in IoT post-
quantum literature due to their comparatively low hardware requirements for endpoints. [20] To
introduce the notion of lattice-based schemes, this section briefly details relevant linear algebra
concepts.

Consider a set 𝑺 of n-dimensional real vectors, {𝑽𝟏, … 𝑽𝒏}. 𝑺 may be labeled as linearly independent

if for all real numbers 𝑨𝒊 , the equation 𝑨𝟏 ∗ 𝑽𝟏 + ⋯ + 𝑨𝒏 ∗ 𝑽𝒏 = 𝟎 implies that all 𝑨𝒊 = 0.

Consider the set of all real linear combinations of these vectors to form a vector subspace 𝑪 with 𝑺

as the basis. 𝑪 = {∑ 𝑨𝒊 ∗ 𝑽𝒊 ∶ 𝑨𝒊 ∈ ℝ𝒏
𝒊=𝟎 } A lattice is a vector subspace in which only integer linear

combinations of 𝑨𝑖 may be used. To build one, simply define 𝑳 = {∑ 𝑨𝒊 ∗ 𝑽𝒊 ∶ 𝑨𝒊 ∈ ℤ𝒏
𝒊=𝟎 }. This

discretization of the subspace results in useful properties, such as a definite smallest vector, one may
also determine the closest vector to any given vector in the subspace. These properties serve as the
groundwork for most lattice-based schemes, when constructed in a high dimension to ensure
cryptographic hardness. An example visualization of a closest vector problem may be viewed below
in figure 10. Once constructed, keys may be used in identical manner to traditional encryption
standards.

Figure 10: An Example Low Dimension CVP Solution [21]

One such construction mechanism for a public key lattice scheme is the Learning with Errors
(LWE) problem. This problem is constructed by introducing some degree of error into a linear

system of matrices, with an adversary being required to find the secret vector 𝒔 when given a matrix

𝑨 and a vector 𝒃 within the linear system. 𝑨𝒔 + 𝒆 = 𝒃. Public key encryption is performed by

selecting a random small vector 𝒓 and modulus 𝒒. Output ciphertext 𝒄 = 𝒓𝑨 +
𝒒

𝟐
∗ (𝝈, 𝟎, … , 𝟎).

This may subsequently be decrypted by taking the inner product 𝒚 = 〈𝒄, 𝒔〉𝒎𝒐𝒅(𝒒), and

𝒐𝒖𝒕𝒑𝒖𝒕 𝟎 𝒊𝒇 |𝒚| <
𝒒

𝟒
𝒆𝒍𝒔𝒆 𝒐𝒖𝒕𝒑𝒖𝒕 𝟏, this will produce the original plaintext. Such keys can be

used in digital signatures or other security applications.

Multivariate schemes provide comparable levels of cryptographic hardness to lattice-based schemes
but are based on problems involving multivariate polynomial equations. Likely the most ubiquitous
example is the Lifted Unbalanced Oil and Vinegar (LUOV) digital signature scheme [22], built

around a system of 𝑚 multivariate quadratic polynomials with 𝑛 variables, divided into two parts,

𝒙𝟏, … , 𝒙𝒗: 𝒗𝒊𝒏𝒆𝒈𝒂𝒓 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 ; 𝒙𝒗+𝟏, … , 𝒙𝒏: 𝒐𝒊𝒍 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔. Oil variables are kept public
while vinegar variables are kept secret. Signatures are produced through matrix generation on an
input of vinegar variables to be collapsed into a linear system, which may be solved through gaussian
elimination with oil variables to produce a signature. Additional multivariate schemes may be based
on multivariate cubic problems, [23] or separate constructions of quadratic problems. [24]

Within OT systems, performance overhead is a major concern. This makes the implementation of
certain post-quantum schemes challenging on individual endpoint devices in industrial information
systems. Despite this, research has identified lattice-based schemes as generally more
computationally efficient than multivariate schemes. As part of a broad review of the subject, [25]
identify lattice-based cryptography through LWE as having several desirable properties for IoT
environments, including a strong performance evaluation of ring-LWE schemes on embedded
devices. They additionally identify network bandwidth requirements as an area of concern, citing
NIST PQC round 2 evaluation metrics. These network performance statistics are displayed below.
Additional open-source benchmarking has been performed on the ARM Cortex-M4 processor
family, used in embedded devices. These evaluations note CRYSTALS-Kyber and SABER as the
most performant schemes among those tested regarding memory stack size and execution clock

cycles. Section 3.1 specifies the various algorithms that have been chosen for evaluation. Post-
quantum algorithms are among them.

Figure 11: NIST PQC Round 2 Network Bandwidth Performance [26]

3. FRAMEWORK SPECIFICATION AND TESTBED DEVELOPMENT

Given the number of integrity-providing protocols across a wide range of organizational scenarios, a
goal of this work is to offer insight into solutions specifically of high relevance to OT environments.
Performance analysis of such solutions is particularly relevant, due to the importance of performant
system design in real time OT environments. A set of integrity-providing protocols is selected, based
on theoretical applicability and industry engagement within the domain of OT. Protocol
performance evaluation is a widely studied subject, so increased focus is given to protocols that have
not received such evaluative investigations previously. In addition, certain older protocols may not
have been evaluated on recent hardware, despite providing similar levels of security to more widely
studied solutions. The evaluative process seeks to measure system and network performance of a
large set of protocols, and thus chose to leverage a virtualized testbed to implement protocols in a
consistent environment. These observations are then analyzed through an OT-specific framework to
quantify protocol performance in relation to OT systems. The testing platform leverages a scripted
virtual machine (VM) deployment mechanism to isolate protocol differences in a testbed, and record
system and network performance impact. The insights gained by the usage of this testbed and
protocol selection are intended to enhance understanding of OT system protocol performance and
help OT system designers in the construction of performant, integrity-providing systems.

3.1. Selected Protocols for Testbed Evaluation

The chosen protocols are selected primarily on history of implementation in OT environments, or
theoretical applicability to OT environments based on existing research. Additionally, more
commonly leveraged protocols are evaluated as a point of comparison to newer, less documented
methods. Selection is additionally based off applicability to integrity provision of a simple network
transaction, most based around digital signatures. This specific focus allows evaluation to be strictly
limited to protocols of high relevance in OT communications systems, as well as provide useful
metrics for system improvement.

Given the inclusion of digital signatures a high number of integrity-guaranteeing schemes, the main
thrust of testing efforts is centered around digital signature algorithms. Elliptic curve digital signature
algorithms (ECDSA) and RSA continue to be among the most widely used classical integrity
enhancing approaches. Both have been widely tested for system and network performance impact
and thus serve as ideal points of comparison for newer approaches. These newer approaches and
corresponding testing rationale are detailed inline.

• Post Quantum Integrity Schemes: Notable lattice based public key/digital signature
schemes are selected from NIST PQC Round 3 finalists, specifically Crystals Dilithium. This
selection allows for an analysis of a diverse set of construction mechanisms in lattice-based
cryptography.

• Hash Based Integrity Schemes: The most widely used hash-based digital signature
algorithm is selected, SPHINCS+

• Multi-Signature Integrity Schemes: Scenarios are altered to include multi-signature
integrity schemes and test the modified ElGamal cryptosystem for integrity provision to
multiple endpoint nodes.

To serve as a point of comparison to these newer approaches, the analysis additionally includes
several classical protocols previously described. These protocols are subjected to the same evaluative
activities as newer approaches and presented alongside them in results, a condensed view of raw
average result data is presented in Table 1 in the Executive Summary.

• Elliptic Curve Cryptography: The analysis includes two elliptic curve variants, a Koblitz
curve (SECP256k1), and a standard Weierstrass curve (BrainpoolP256R1).

• Message Authentication Codes: The standard MAC architecture detailed in section 2.3 is
implemented.

• RSA: The Digital Signature Algorithm leveraging RSA is implemented, with SHA-256
hashing algorithm.

3.2. Operational Technology Evaluative Framework

Existing protocols have been subject to many evaluative efforts in relation to performance, relative
security, and scalability. Despite these efforts, evaluation measures often vary in hardware used or
offer generalized performance metrics. OT systems often possess specified technologies and have
unique requirements for efficient operation. Due to these concerns, this work outlines an OT-
relevant model of evaluation for integrity enhancing protocols, building on existing observations and
frameworks.

Embedded device performance evaluation has long been a popular topic in the research community,
particularly in the field of security. However, these efforts commonly focus on Internet-of-Things
(IoT) systems, and typically include IoT platform performance evaluations, physical layer security,
and high-level protocol overhead. While these areas present important concerns for traditional IT-
based IoT systems, OT architecture presents a separate set of challenges. OT systems are often even
more resource constrained than traditional IoT endpoint devices, and traditional system failure states
could be unacceptable due to real-time availability requirements. Fleet management of OT devices is
far less involved than an IoT platform system, shifting the importance of performance to the
endpoint nodes themselves. Drawing on these observations, this work scopes evaluation to OT
Programmable Logic Controller based topologies, which account for a significant majority of
modern OT systems and allow for straightforward transaction testing within a simulated OT system.

Certain performance metrics prove to be uniquely valuable in the evaluation of OT communication
protocols. Running times of key generation, message encapsulation, and de-encapsulation have
shown to be historically valuable in protocol evaluation, [27] and are of equal importance to time-
critical OT systems. Key management hierarchies [28] have been shown to be an effective manner
of visualizing key access and storage requirements in distributed systems. Such techniques may be
leveraged in combination with analysis of long-term key storage requirements, which other
researchers have noted as being highly variable between protocols. [29] Additional storage
requirements, such as cryptosystem storage requirements, or hyperparameter value storage in the
case of neural algorithms, must also be accounted for. Short term memory performance is
additionally an area of concern and may even cause device failure in certain scenarios. [29] As with
running times, memory usage may be subdivided into key generation and communication service
requirements. Finally, the NIST security level of a given protocol is included, specifically the NIST
PQC Security Levels. [31] The external evaluation of protocols provides value for AR systems,
which require clear trusted confirmation of cryptographic hardness in protocol design.

As a result of this analysis, the following metric groups for our evaluative framework are identified:

• Protocol Running Time: This component of analysis includes real time, as well as
asymptotic analysis for each protocol selected. Running time metrics for digital signature
schemes may be further subdivided into key generation and inter device communication and
are typically recorded in microseconds.

• Endpoint Storage Requirements: This component identifies both key and cryptosystem
storage requirements on an endpoint device. Due to variable key lengths between protocols,
coupled with often low storage capacities of OT environments, this is a significant metric in
measuring the difficulty of practical implementation.

• Protocol Hardware Performance: This work leverages standard analytical tools to explore
CPU and memory usage for protocol components. Due to the time-critical nature of OT
systems, additionally investigate latency overheads or levels of system jitter associated with
individual protocols.

• Existing NIST Security Evaluation Level: This work includes the relevant NIST security
classification levels for each protocol tested, this serves as a relative indicator of overall
protocol attack resistance and cryptographic hardness. When coupled with findings on
performance, this component offers additional insight into overall protocol usefulness to
OT security administrators. While these scores are not provided for all evaluated protocols,
NIST classification parameters allows them to be easily derived based on protocol
cryptographic hardness. We detail this further in Section Error! Reference source not
found..

We leverage a single virtualized testing environment for all evaluated protocols, to ensure observed
differences may be accounted for by changes in protocol.

Attribute
Group

Attribute Metric Notes

Protocol

Running time

Key Generation Running Time Microseconds (μs) Measured in function call

Key Generation Asymptotic
Worst Case

Big O Notation
(O(n))

Derived theoretically

Key Encapsulation Running
Time

Microseconds (μs) Measured in function call

Key Decapsulation Running
Time

Microseconds (μs) Measured in function call

Endpoint
Storage

Requirements

Key Storage Requirements Bytes Single key storage

Cryptosystem Storage
Requirements

Bytes Algorithm component storage
requirements

Protocol
Hardware

Performance

Cryptosystem Average CPU
Utilization

Percentage Average usage over a single
transaction

Cryptosystem Average Memory
Usage

Percentage Average usage over a single
transaction

Network Transmission Time Milliseconds (ms) Measured in function call

Existing
Security

Evaluation
Level

NIST PQC Security Project
Levels [31]

Integer Scale (1-5) Protocol security in relation
to classical protocols, includes
classical and quantum
resistance.

Table 2: Framework Metrics and Groups

3.3. Testbed Design and Construction

As detailed in section 3.2, prior approaches have identified numerous metrics of evaluating protocol
performance in system testbed scenarios. These approaches also leverage techniques such as
hardware reuse allows for easy management of independent variables in an experiment, whether in a
virtualized or physical system. Experimental design methodology is largely consistent between prior
evaluative efforts. We draw on these established approaches in outlining our tools and techniques
for protocol evaluation.

Our proposed design involves the usage of a fully virtualized testbed, which simplifies
configurational complexity and improves workflows related to testing multiple protocols, leading to
a greater degree of testing efficiency. Performance realism has been noted as a concern in similar
experiments, [32] but due to our singular focus on individual protocol performance, this does not
present an impediment. Core to our experimental configuration is the usage of the Minimega system
[33] as a hypervisor management tool. Minimega was selected as a result of its rapid deployment
capabilities, lack of configurational complexity, and data capturing tools. Minimega allows for
inspection and `capture of network and file system activities on all virtualized endpoint machines,
vastly simplifying performance measurement.

Minimega interacts directly with the KVM hypervisor and QEMU [34] emulation platform, allowing
for compatibility with most Debian-based Linux systems. Minimega requires no external software
stack or complex initial configuration, allowing for fast, efficient deployment of a wide array of
experimental testbed scenarios. OpenVSwitch is leveraged for an internal switching stack, and
VMbetter allows for the export of virtual hosts into many common disk image formats. Protonuke,
a simple layer 3 traffic generation module, allows for diverse network conditions for
experimentation. These features allow for the ease of recording and exporting scientific results,
which in turn allows for the replicability of our protocol performance evaluation.

Virtualized system availability is a concern when experimenting with OT systems, as many OT
providers have not release emulated versions of their software. However, our scope largely excludes
us from this problem, as we specifically endpoint performance. Emulation tools such as QEMU
enable the execution of commonly used OT software binaries such as ARM and MIPS, which we
may leverage through Minimega. Endpoint emulation allows us to conduct a thorough evaluation of
OT performance on certain integrity-enabling protocols. Future work may extend this evaluative
platform as OT virtualization technology develops further. Alternatively, future work could leverage
a hardware-in-the-loop (HiL) approach to support these devices.

4. PROTOCOL TESTING METHODOLOGY

Performance evaluation was conducted across a range of selected protocols as detailed in section
3.1. To effectively and accurately monitor performance across protocols, a single testing program
was constructed, with implementations for each evaluated protocol. This tool was developed with a
focus on performance and experimental scalability, formalizing tests as a single network transaction
of message, using one of several available protocols. This approach allows for minimization of
potential performance differences between publicly available implementations, especially those with
graphical or network integration components. This section details both the nature of the testing
program, the hardware leveraged in protocol evaluation, and the recorded data from testing.

4.1. Protocol Testing Tool

Given the network transaction focus of the proposed framework, the implemented testing tool is
constructed as a network socket program focused on the sending and integrity verification of a
single, variable length message. To support this goal, the testing tool is comprised of two
components, a client and server program that may run on shared or separate nodes within a testing
environment. The client machine implements the key generation, message encapsulation, and
message sending components of a transaction, whereas the server machine receives, decapsulates,
and verifies the message sent. Encapsulation is used in this context to refer to the preparatory steps
taken before the sending of a verifiable message. For digital signatures this includes the encoding of
a public key as well as the hex encoding of a signed message. Upon reception of these components,
the server performs a message integrity verification and sends a response message to the client
containing the success or failure of the integrity verification operation, in addition to the server-side
performance metrics.

Both client and server components are implemented in C++ to support performance and protocol
implementation requirements. Specifically, the BOTAN library is implemented for its native support
of multiple protocols chosen for analysis, including RSA, multiple variants of ECDSA, SPHINCS+,
and Dilithium. The open-source nature of BOTAN allows for the verification of protocol
implementation, and modification if desired for a given protocol. When applicable, public key
information is sent alongside the message for verification. No pre-knowledge concerning keys or
cryptographic modules is used unless explicitly specified in protocol design. Performance metric
recording is an additional core component of the testing tool, metrics are gathered in accordance
with specified framework components. Key generation running time, content encapsulation, content
decapsulation, key size, cryptosystem size, CPU usage, RAM usage, and RTT are all measured during
program runtime. Results are exported to a CSV file once per run, with subsequent runs appending
results to the same file, associated with the protocol chosen for the test. Metrics are gathered from a
variety of sources; a separate program thread is launched at the start of testing to record CPU and
RAM usage associated with PID using the Linux proc filesystem. Metrics associated with running
time are calculated using the C++ chrono library, which records timing intervals for specific
algorithmic functions in line with those defined in the framework.

4.2. Testing Conditions and Result Formatting

The initial round of testing was conducted on a single device, in which both client and server
components were hosted locally. This approach was chosen for initial testing as to provide a clear
baseline of internal protocol performance, before external network conditions were introduced on
the virtualized testbed. Future work includes will extend these measurements to the proposed

Minimega testbed. The device leveraged for testing was an Ubuntu 20.04 endpoint system, the
components of which include a 12th Gen Intel(R) Core i7-1265U10 Core processor, 16.0 GB of
RAM, and 600 GB of system storage. Future testing is likely to include virtualized OT and IoT
systems, for increased result applicability to the central theme of this work.

During program runtime, results are stored incrementally in a csv file, in which each protocol run
appends a new line. Separate files are generated on a per protocol basis, and not erased until
removed in the file system. This allows for the scripting of large-scale testing experiments, in which
the testing program is called with command line arguments indicating the message to send and the
protocol to use. The core workflow envisioned for analysis is that of a single message being sent and
integrity-verified across two network nodes. As such, messages may be variable-length text files that
are saved as strings and sent during a transaction. Upon completion of a test or scripted run, csv
outputs are immediately viewable and may be imported or analyzed using external tools.

5. CURRENT RESULTS

The current results dataset consists of seven tested protocols: SECP256k1, BrainpoolP256R1, RSA,

Dilithium, MAC, Sphincs+, and ElGamal. Two prime field curves are included in the initial round

of testing a Koblitz curve (SECP256k1), and a standard Weierstrass curve (BrainpoolP256R1).

Dilithium and Sphincs+ serve as two post-quantum implementations. MAC is additionally included

as the only non-authenticity verifying protocol. Testing was conducted via a scripted setup as

detailed in section 4.2, with 100 runs for each protocol. The resulting CSV files were

programmatically allocated into a single dataset, which was imported into Microsoft Excel for

analysis and visualization. A compiled form of averaged results per category may be seen in the

Executive Summary. Timing metrics are recorded in MS, whereas spatial metrics are recorded in

bytes. CPU and RAM measurements are recorded as percentages of total usage while the program

was active i.e., CPU 2.3 = 2.3% usage over a testing operation.

Immediate observations regarding known protocol strengths are evident from the resulting dataset,

for example, in average case analysis, RSA shows to have the longest key generation running times

by a significant margin. This constitutes expected behavior, given the poor performance scaling of

RSA with larger key sizes. Additionally, note the faster key generation times of the simpler Koblitz

curve ECC algorithm compared to the standard implementation. MAC predictable outperforms all

others here, as the pre-shared architecture allows for simplistic key generation without public key

architecture. While the inclusion of a single non digital signature algorithm may seem out of place,

the goal of testing is to measure only integrity provisions across network transactions. Authenticity is

often combined with integrity in modern protocol design, leading to the inclusion of protocols

which fail to solely provide integrity. When targeted as a unique, single algorithm goal as is done in

MAC, results show that performance improves drastically. These results may be visualized below in

Figure 12.

Figure 12: Average Key Generation Running Times

4461.544554
12698.62376

77162.0099

226.7326733
78.71287129

9299.029703

2131483.931

1

10

100

1000

10000

100000

1000000

10000000

ECDSA
(secp256k1)

ECDSA
(Brainpool)

RSA Dillithium MAC Sphincs+ ElGamal

R
u

n
n

in
g

Ti
m

e(
M

S)

Key Generation Running Times

Commented [VR1]: I moved this to the executive summary
since the table went up there. We should remove this from
here.

More surprising insights were gained through the usage of framework specific components, such as

comparatively high memory usage for the standard Brainpool curve algorithm. As well as the CPU

intensiveness of RSA and Sphincs+ in the dataset. These results allow for unique insights into the

process of integrity protocol implementation within the OT domain. The high memory usage likely

excludes certain variants of elliptic curves, depending on the system. Figure 14 visualize CPU and

memory performance metrics. Algorithms with higher CPU requirements, such as Sphincs+ may

present performance challenges depending on system scalability needs. An unmeasured statistic was

that of signature size for the digital signature algorithms, an area in which Sphincs+ performed

particularly poorly. This is reflected in the network transmission time statistics seen above in Table

1. The high storage requirements of Sphincs+ likely make it an untenable solution for many OT

systems, as is reflected in figure 15.

Figure 13: Average Encapsulation & Decapsulation Running Times

Unsurprisingly, one of the best evaluated algorithms was MAC, due to its lack of authenticity

provision and simpler key generation procedures. The lack of a signing operation allows for faster

key and message transmission and verification, which could be increased further with the inclusion

of pre-shared keys, as is done on many existing implementations of MAC. The results of MAC

support its usage in OT systems, in which fast network transactions and endpoint performance are

prioritized for system operation. The performant results further support the notion of exploring the

de-coupling of integrity from other security goals, such as authenticity and confidentiality due to

strong protocol performance in high impact metric groups. Figure 16 displays a cumulative

distribution of all MAC RTT values, in which performance remains under 1000 MS for upwards of

90% of trials, making the second strongest performing algorithm in this category.

1

10

100

1000

10000

ECDSA
(secp256k1)

ECDSA
(Brainpool)

RSA Dillithium MAC Sphincs+ ElGamal

R
u

n
n

in
g

Ti
m

e
(M

S)

Encapsulation + Decapsulation Running Times

Encapsulation Time Decapsulation Time

Figure 14: Average Hardware Component Usage

All tests were performed across a local socket connection on the endpoint device, even in these

conditions, some degree of transmission variability was observed. Additional network constraints,

such as those detailed in the proposed testing environment would provide additional insight into

protocol performance in real-time OT systems. Minimega traffic generation using Protonuke could

be leveraged to provide real-time network background data. Protocol performance differences are

likely to be brought further into view in such a setting, particularly in instances in which

retransmission of data packets is required. Key and signature sizes are likely to become even more

significant in such a setting.

Figure 15: Storage Component Sizes

0

5

10

15

20

25

ECDSA
(secp256k1)

ECDSA
(Brainpool)

RSA Dillithium MAC Sphincs+ ElGamal

P
er

ce
n

ta
ge

 o
f

R
es

o
u

rc
e

U
se

d

Hardware Component Usage

CPU RAM

416 416

72 72

24

72 72
48 48 48 48 40 48 48

0

50

100

150

200

250

300

350

400

450

ECDSA
(secp256k1)

ECDSA
(Brainpool)

RSA Dillithium MAC Sphincs+ ElGamal

St
o

ra
ge

 S
iz

e
(B

yt
es

)

Endpoint Storage Requirements

Key Size CS Size

Existing security quantifiers represent the final part of the framework analysis. NIST PQC Security

categories are based off relative hardness to classical cryptographic protocols, specifically AES. Post

Quantum resistance is additionally included when applicable. All protocols are evaluated based on

the described set of input parameters in section 3.2. Results are predictable based on protocol

architecture and initialization specifications. This information is viewable below in Table 3

Figure 16: Cumulative Distribution of MAC RTT

Protocol Name NIST PQC Security Level Quantum Resistance

ECDSA (SECP256k1) 3(Comparable to AES-192) None

ECDSA (Brainpool256r1) 3(Comparable to AES-192) None

RSA 2 (Comparable to AES-128) None

Dilithium 5 (Comparable to AES-256) Strong

MAC 2 (Comparable to AES-128) Weak (Vulnerable to Grover’s

algorithm)

Sphincs+ 5 (Comparable to AES-256) Strong

ElGamal 2 (Comparable to AES-128) None

Table 3: NIST PQC Ranking Applied to Selected Algorithms

0%

20%

40%

60%

80%

100%

0 5,000 10,000 15,000 20,000

P
er

ce
n

ta
ge

 o
f

Tr
ia

ls

Time (MS)

RTT Distribution (MAC)

6. CONCLUSION

This report presents the motivation and current landscape of integrity providing protocols. Integrity

provision provides organizational value across a wide range of scenarios, encompassing OT

environments. Many protocols are available for use, each containing unique advantages. Section 2

serves as a survey of integrity protocols providing a background of these protocols. Several

categories of protocols are described to provide a thorough investigation of what is available. This

background is given to provide documentation of characteristics and architecture of protocols and

their categories. Section 3 discusses the evaluation framework created for analyzing integrity

protocols. The framework consists of various metrics such as protocol running time, CPU, and

memory utilization. These metrics help to categorize protocols and provide operators with

information on their resource utilization. It additionally gives the protocols chosen for analysis and

the reasoning behind their selection.

The team implemented elliptic curve algorithms, MACs, Sphincs+, Crystals-Dilithium, and RSA. In

section 4 the testing methodology for this work is presented. The testing program is detailed in this

section. The client-server architecture of the system is discussed and allows for the encapsulated data

transfer to occur. The hardware used to run the tests are also described to give the reader an

understanding of the computational resources the algorithms were run on. Section 5 outlines the

evaluation framework results found from implementing various protocols. Depending on the

algorithm, integrity, authenticity or confidentiality can be incorporated into a system. Having all

three of these features can be resource intensive. The results section provides an analysis of the

various selected protocols. The results show that the integrity specific protocols such as MAC take

less time for key generation, encapsulation and decapsulation. They also consume less memory and

processing power. If the data can be passed in clear text with the incorporated MAC, operating cost

can be reduced in comparison to many other protocols. The enhanced security of quantum-resistant

protocols such as Sphincs+ can be visualized through the increased resource utilization of these

algorithms. This is due to the increased complexity of the trapdoor function necessary to provide

quantum-resistance, in addition to large signature sizes generated by such algorithms. Overall, the

results showcase the diverse range of integrity protocols and provide operators with a roadmap for

what they should choose when devising their networks.

Regarding protocol selection, these results demonstrate superior performance metrics for MAC

across multiple evaluative categories related to running times and hardware usage. This suggests that

future implementations of resource-constrained devices could be better served to move past the

digital certificate model for improved performance within the domain of classical integrity providing

protocols. Additionally, within systems that require post-quantum attack resistance, lattice-based

cryptosystems offer better performance and storage requirements than a hash-based counterpart.

Additionally, multi-signature algorithms tend to perform similarly to other classical digital signature

systems on a per-endpoint basis and should likely only be incorporated when specifically needed for

certain system architectures. Regarding specific device implementations, further testing would be

required to determine device specific protocol suitability. However, this work shows Koblitz curve

ECDSA and MAC as performant options for endpoint OT devices. Additionally, Sphincs+ should

likely not be used in time sensitive OT environments, due to delay induced by high RTT

measurements.

Within the domain of Nuclear AR systems, these results present an actionable framework for

performance preservation in AR systems seeking to incorporate data integrity guarantees into

component communications. Such systems would be well served to leverage non-public key

protocols when available. MAC presents the most compelling choice for classical integrity provision

in AR systems. For systems which require resilience to post-quantum attacks, Dilithium and other

lattice-based schemes offer comparatively high-performance solutions on OT devices. Finally, these

results additionally show several options for integrity and authenticity provisions in the analyzed

public key algorithms, which may be used as needed to produce similar observations.

A DCSA is a necessary component of any secure reactor system. These systems must be able to

deny parties from performing certain actions such as the alteration of critical data. This can be done

through secure elements such as a Trusted Platform Module (TPM), which is able to store keys

securely on a device and an integrity protocol, which uses those keys to verify that data has not been

altered during communication. The incorporation of integrity protocols into the DCSA prevents an

attacker from distorting information being sent across network infrastructure. These tools can

enhance the protection of reactor components, functions and processes. Various algorithms are

presented in this work that can accomplish this task, but for integrity purposes the results show that

MAC provide the best performance.

Future work is likely to incorporate additional protocols or framework metrics. While initial work

indicates a set of promising protocols for OT system adoption, further work is needed to calibrate

this list for specific scenario optimization. Additional authenticity or confidentiality requirements

may be present in some settings, which would require separate validation. Novel framework metrics

could be included, to further tailor results to specific environments or operational paradigms. End-

to-end network systems often request the retransmission of data at the application layer of the

network stack. Evaluation of protocol performance in such re-transmission scenarios presents an

OT-Specific evaluative future goal, as retransmission performance may be observed in network and

application layer metric gathering. Finally, future deployments of integrity provisions in OT physical

systems may be observed, to monitor physical implications of integrity provision being present in

OT systems.

7. REFERENCES

[1] M. S. Sonkor and B. G. d. Soto, "Operational Technology on Construction Sites:A Review from
the Cybersecurity Perspective," Journal of Construction Engineering and Management, 2021.

[2] G. Assenza and R. Setola, "OPERATIONAL TECHNOLOGY CYBERSECURITY: HOW
VULNERABLE IS OUR CRITICAL INFRASTRUCTURE?," INTERNATIONAL
SCIENTIFIC JOURNAL OF THE MINISTRY OF DEFENSE OF THE REPUBLIC OF
NORTH MACEDONIA, 2019.

[3] D. D. Clark and D. R. Wilson, "A Comparison of Commercial and Military Computer Security
Policies," IEEE Symposium on Security and Privacy, 1987.

[4] A. M. Qadir and V. Nurhayat, "A Review Paper on Cryptography," International Symposium on
Digital Forensics and Security, 2019.

[5] M. C. B. C. M. H. I. B. a. K. H. Alexandre Meylan, "A Study on the Use of Checksums for
Integrity Verification of Web Downloads.," ACM Trans. Priv. Secur. 24, p. Article 4, 2021.

[6] C. P. W. a. E. Z. Gopalan Sivathanu, "Enhancing File System Integrity Through Checksums,"
Technical Report FSL-04-04, 2004.

[7] D. A. McGrew and J. Viega, "The Galois/Counter Mode of Operation (GCM)," NIST Special
Publication 800-38D, 2007.

[8] A. J. Ordonez and B. D. Gerardo, "Digital Signature with Multiple Signatories Based on
Modified ElGamal Cryptosystem," 2018. [Online].

[9] T. Yang and Y. Zhang, "Digital Signature Based on ISRSAC," ieee signal processing, 2021.

[10] M. Kenta, Y. Naoto and O. Shingo, "Secure Routing Protocols for Sensor Networks," 2015
IEEE Trustcom/BigDataSE/ISPA, 2015.

[11] D. Johnson , A. Menezes and S. Vanstone, "The Elliptic Curve Digital Signature Algorithm
(ECDSA)," 31 January 2014. [Online]. Available:
https://link.springer.com/article/10.1007/s102070100002. [Accessed 1 January 2024].

[12] I. K. Dutta, B. Ghosh and M. Bayoumi, "Lightweight Cryptography for Internet of Insecure
Things: A Survey," IEEE, 14 March 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8666557. [Accessed 1 January 2024].

[13] N. Kumar and S. Aggarwal, "Advances in Computers: Digital Signatures," ScienceDirect, 29
September 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S0065245820300590. [Accessed 1
January 2024].

[14] M. Adalier and A. Teknik, "Efficient and Secure Elliptic Curve Cryptography Implementation of
Curve P-256," NIST, 2015. [Online]. Available:
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-
standards/documents/papers/session6-adalier-mehmet.pdf?ref=https://githubhelp.com.
[Accessed 1 January 2024].

[15] M. B. Niasar, R. E. Khatib, R. Azarderakhsh and M. Mozaffari-Kermani, "Fast, Small, and Area-
Time Efficient Architectures for Key-Exchange on Curve25519," IEEE, 7 June 2020. [Online].
Available:
https://ieeexplore.ieee.org/abstract/document/9154488?casa_token=Z8V4mffdHEIAAAAA:f
XopJ1HDlzwFDmHtCngvwlhr1feRzsQc9R3PjcNVzNxS_Gxfhg2dEFD-
OKKF2u5W8opSj0IN0w. [Accessed 1 January 2024].

[16] Z. Liu, P. Longa, G. C. C. F. Pereira, O. Reparaz and H. Seo, "FourQ on Embedded Devices
with Strong Countermeasures Against Side-Channel Attacks," IEEE, 30 January 2018. [Online].
Available:
https://ieeexplore.ieee.org/abstract/document/8274963?casa_token=bxXvpKYe31YAAAAA:x
V8ZWYjI4-mr5B68ADqvaSs9eDKF9hGorpnaxuldglcma-wtIWUMl9gzdM1VmQ87JLS5rIStlQ.
[Accessed 1 January 2024].

[17] A. A. Yavuz and M. O. Ozmen, "Ultra Lightweight Multiple-Time Digital Signature for the
Internet of Things Devices," IEEE, 15 July 2019. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8762164?casa_token=d0rErVsORCoAAAAA:E
dEl73_M4tkQVS1M7kgr9t-LL3DbrAYE8FQ9DnUUpS6DHRsp-
dlpFIHj5OWTw_KTnfS2Kp7PgQ. [Accessed 1 January 2024].

[18] R. Alvarezq, J. Santonja and A. Zamora, "Algorithms for Lightweight Key Exchange," Springer
Link, 3 November 2016. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-
319-48799-1_58. [Accessed 1 January 2024].

[19] J. H. Faruk, S. Tahora, M. Tasnim, H. Shahriar and N. Sakib, "A Review of Quantum
Cybersecurity: Threats, Risks, and Opportunities," International Conference on AI in Cybersecurity
(ICAIC), 2022.

[20] Z. Liu, K.-K. R. Choo and J. Grossschadl, "Securing Edge Devices in the Post-Quantum
Internet of Things Using Lattice-Based Cryptography," IEEE Communications Magazine, 2018.

[21] E. Orsini, "Hybrid lattices and the NTWO cryptosystem," Department of Mathematics at
University of Trento, University of Trento, 2011.

[22] A. Kipnis, J. Patarin and L. Goubin, "Unbalanced Oil and Vinegar Signature Schemes," Eurocrypt,
1999.

[23] N. Kundu, S. K. Debnath, D. Mishra and T. Choudhury, "Post-quantum digital signature
scheme based on multivariate cubic problem," Journal of Information Security and Applications, 2020.

[24] D. Kales and G. Zaverucha, "Forgery Attacks on MQDSSv2.0," Microsoft Research Article, 2019.

[25] B. Liu, X. L. Yu, S. Chen, X. Xu and L. Zhu, "Blockchain Based Data Integrity Service
Framework for IoT Data," IEEE International Conference on Web Services, 2017.

[26] A. Khalid and M. S, "Lattice-based Cryptography for IoT in A Quantum World: Are We
Ready?," International Workshop on Advances in Sensors and Interfaces, pp. 194-199, 2019.

[27] F. Lauterbach, P. Burdiak, F. Richter and M. Voznak, "Performance Analysis of Post-Quantum
Algorithms," Telecommunications Forum, no. 9, 2021.

[28] N. Kumar and A. Mathuria, "Comprehensive Evaluation of Key Management Hierarchies for
Outsourced Data," Cybersecurity, vol. 2, no. 1, 2019.

[29] A. Fournaris, G. Tasopoulos, M. Brohet and F. Regazzoni, "Running Longer to Slim Down:
Post Quantum Cryptography on Memory Constrained Devices," IEEE International Conference on
Omni-layer Intelligent Systems, 2023.

[30] "Security Requirements for Cryptographic Modules," National Institute of Standards and
Technology, 22 March 2019. [Online]. Available: https://csrc.nist.gov/pubs/fips/140-3/final.
[Accessed 29 2 2024].

[31] "Post Quantum Cryptography," National Institute of Standards & Technology, 3 January 2017.
[Online]. Available: https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/evaluation-criteria/security-(evaluation-criteria). [Accessed 29
February 2024].

[32] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K. Webb and J. Lepreau,
"Large-scale Virtualization in the Emulab Network Testbed," University of Utah, Salt Lake City,
UT, 2008.

[33] J. Crussell, J. Erickson, D. Fritz and J. Floren, "minimega v3.0," Sandia National Labs,
Albuquerque, NM, 2015.

[34] N.A., "QEMU: A Generic and Open Source Machine Emulator and Virtualizer," QEMU, 4
March 2024. [Online]. Available: https://www.qemu.org/. [Accessed 5 March 2024].

[35] R. Gennaro, C. Gentry and B. Parno, "Non-Interactive Verifiable Computing: Outsourcing
Computation to Untrusted Workers," IACR, 2010.

[36] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky and D. Werthimer, "SETI@home: An
Experiment in Public-Resource Computing," Communications of the ACM, 2001.

[37] S. Goldwasser, S. Micali and C. Rackoff, "The Knowledge Complexity of Interactive Proof
Systems," SIAM Journal on Computing, 1989.

[38] X. Yu, Z. Yan and A. Vasilakos, "A Survey of Verifiable Computing," Mobile Networks and
Applications, 2017.

[39] D. Fiore, R. Gennaro and V. Pastro, "Efficienty Verifiable Computation on Encrypted Data,"
Communications of the ACM, 2014.

[40] I. Zikratov, A. Kuzmin, V. Akimenko, V. Niculichev and L. Yalansky, "Ensuring data integrity
using blockchain technology," Conference of Open Innovations Association (FRUCT), 2017.

[41] E. Reilly, M. Maloney, M. Siegel and G. Falco, "An IoT Integrity-First Communication Protocol
via an Ethereum Blockchain Light Client," International Workshop on Software Engineering Research &
Practices for the Internet of Things (SERP4IoT), 2019.

[42] H. Han, S. Fei, Z. Yan and X. Zhou, "A Survey on Blockchain-Based Integrity Auditing for
Cloud Data," Digital Communications and Networks, 2022.

[43] C. Stach, C. Gritti, D. Przytarski and B. Mitschang, "Trustworthy, Secure, and Privacy-aware
Food Monitoring Enabled by Blockchains and the IoT," IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), 2020.

[44] NIST, "Digital Signatures," 4 January 2017. [Online]. Available:
https://csrc.nist.gov/projects/digital-signatures.

[45] NIST, "NIST Selects 'Lightweight Cryptography' Algorithms to Protect Small Devices," 7
February 2023. [Online]. Available: https://www.nist.gov/news-events/news/2023/02/nist-
selects-lightweight-cryptography-algorithms-protect-small-devices.

[46] C. Kumar, S. S. Prajapati and R. K. Verma, "A Survey of Various Lightweight Cryptography
Block Cipfers for IoT Devices," 23 December 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/10080556/authors#authors.

[47] S. Jhajharia, S. Mishra and S. Bali, "Public Key Cryptography using Neural Networks and
Genetic Algorithms," IEEE , 2013.

[48] X. Hao and W. Ren, "Asymmetric cryptographic functions based on generative adversarial,"
elsevier, pp. 243-253, 2021.

[49] I. Meraouche and S. Dutta, "Learning asymmetric encryption using adversarial neural networks,"
Elsevier, 2023.

[50] A. Jain and J. Singh, "Improved Recurrent Neural Network Schema for Validating," mathematics,
2022.

[51] A. Ahmed, F. Abdullatif and T. Hasa, "Generating and Validating DSA Private Keys from
Online Face," International Journal on Advanced Engineering Information Technology, 2019.

[52] I. Goodfellow and Y. Bengio, Deep Learning, 2019.

[53] H. Badr, "Instant-Hybrid Neural-Cryptography (IHNC) based on fast machine," Neural
Computing and Applications, 2022.

[54] C. I. Rene, N. Katuk and B. Osman, "A Survey of Cryptographic Algorithms for Lightweight
Authenticaiton Schemes in the Internet of Things Environment," IEEE, 09 December 2022.
[Online]. Available: https://ieeexplore.ieee.org/document/9970015. [Accessed 1 January 2024].

[55] G. Mao, Y. Liu, W. Dai, G. Li, Z. Zhang, A. H. F. Lam and R. C. C. Cheung, "REALIZE-IoT:
RISC-V-Based Efficient and Lightweight Public-Key System for IoT Applications," IEEE, 2020
July 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10189076. [Accessed 1
January 2024].

[56] Y. Song, X. Hu, W. Wang, J. Tian and Z. Wang, "High-Speed and Scalable FPGA
Implementation of the Key Generation for the Leighton-Micali Signature Protocol," IEEE, 27
April 2021. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9401177?casa_token=MCdpIwJhw1sAAAAA:S
pOc2zFzfnc87hKkgCOaJI3bRskbFSNT8ShPUtbtwe6AGoeeahCBtOTVwzpsvHM7ampEhcjL
Og. [Accessed 1 January 2024].

[57] P. Longa and R. Cruz, "Microsoft/FourQlib," GitHub, [Online]. Available:
https://github.com/Microsoft/FourQlib. [Accessed 1 January 2024].

[58] "Signer Efficient Multiple-Time Elliptic Curve Signature," Github, [Online]. Available:
https://github.com/ozgurozmen/SEMECS. [Accessed 1 January 2024].

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

Lon Dawson 8851 ladawso@sandia.gov

Ben Cipiti 8845 bbcipit@sandia.gov

Technical Library 1911 sanddocs@sandia.gov

Email—External

Name Company Email Address Company Name

Katya Le Blanc katya.leblanc@inl.gov Idaho National Laboratory

This page left blank

mailto:ladawso@sandia.gov
mailto:bbcipit@sandia.gov
mailto:katya.leblanc@inl.gov

