Vestas.

Wind. It means the world to us."

Leading Edge Erosion: an Aerodynamic perspective

FRANCESCO GRASSO Blades ACT team 21/03/24

Introduction

LE erosion aerodynamic modelling

LEP solutions

LE erosion mitigation by aerodynamic design

Conclusions

1. Introduction – why aerodynamics cares?

The flow around the blade has a laminar region and a turbulent region

Generally, turbulent flow generates larger drag

Geometrical imperfections might introduce early transition to turbulent and so, additional drag AND NOISE

1. Introduction – what we want to achieve at the end?

Classification: Public

Maintenance support planning

Tailored maintenance solution

2. LEE aerodynamic modelling – general aspects

Approach	Pro	Cons
Semi-empirical	No/little computational effort	 Lot of data needed to build the model
2D/3D Panel code	 Low computational effort Simple usage 	 Geometrical limitations in describing eroded shape Need of data for validation
2D/3D CFD	 More general in regards of model restrictions 	 Very expensive in computational resources Need of data for validation
Al/machine learning	Low computational effortNo model-limited	 Very expensive in training the model Need of data for validation and training

Regardlessoftheapproach,experimentaldataandrobustLEerosionclassificationsystemneeded

2. LEE aerodynamic modelling – standardise LE erosion categories

Vestas joined **IEA task46** and **LERCAT** initiatives to collaborate with other Institutions in the Wind Community and advance together the state of art

Task 46 | IEA Wind TCP (iea-wind.org)

LERcat - DTU Wind and Energy Systems

Classification system				Source			
details	Vestas	Sandia	IEA task46	LM	SGRE	UIUC	EURAMET
Blade/aerofoil based system	Combined blade/aerofoil	Combined blade/aerofoil	aerofoil	aerofoil	aerofoil	aerofoil	aerofoil
Blade level scenarios	6	4	Same as Sandia TBC	NA	NA	NA	NA
Aerofoil level severity grades	5	4	5	3	4	9	5
Aerodynamic impact metric	Drop on aerofoil Cl, Cd, Cm, L/D	Drop on aerofoil Cl, Cd, Cm, L/D	Power reduction	Drop on aerofoil Cl, Cd, Cm, L/D	Aerofoil L/D drop	Drop on aerofoil Cl, Cd, Cm, L/D	Aerofoil L/D drop
Aerodynamic data source	Wind tunnel	Wind tunnel	Same as Sandia TBC + Power Simulation TBC	Wind tunnel	NA	Wind tunnel	Wind tunnel
Aerofoils tested	NACA 63 ₃ -418, Vestas aerofoils	NACA 63₃-418, S825	Same as Sandia TBC	DU00-w-212	NA	DU96-w-180	NACA 63 ₃ -418
Reynolds number [million]	Up to 3 for Vestas aerofoils, up to 5 for NACA 63 ₃ -418	2 for S825, 2.4 for NACA 63 ₃ - 418	Same as Sandia TBC	3, 6	NA	Up to 1.85	Up to 7
Technique to reproduce erosion on wind tunnel model	LE erosion masks	LE erosion reproduction	Same as Sandia TBC	3D printed LE based-on RET tests	NA	Contaminated LE	sandpaper

Classification: Public

2. LEE aerodynamic modelling – reverse LE erosion categories

Would it be possible to build a LE erosion classification system based on available wind tunnel data, as kind or reverse approach?

Few questions:

- Different aerofoils have been used. Would be the trends applicable to all?
- LE erosion in wind tunnel is emulated in different ways. Which one is more appropriate? Are the results compatible?
- The data are measured in wide Re number range. Which one to use? Would the trends be consistent?
- Different parameters could be used as reference. Which ones are more appropriate? Would the trends be very sensitive to this choice?

· How the parameters should be tracked?

			_									
Source	Datacat	Aarafail				Data Re i	numb	er				
Source	Dataset	Aeroioli	1	1.2	1.5	1.75	2	2.2	3	4	5	6
Vestas		Vestas aerofoils		x		х	x	х	x		x	
Sandia		NACA 63 ₃ -418 \$814			x		x		x	x		
IRPwind		NACA 63 ₃ -418	х				х		х			
DTU	LERWTB	NACA 63 ₃ -418							x		х	х
DIO	Stuttgart	NACA 63 ₃ -418							x			
LM		DU00-w-212 LM aerofoil							x			x
UIUC		DU96-w-180	x		х		х					

2. LEE aerodynamic modelling – reverse LE erosion categories

Few attempts...

Partner	Erosion range						
Vostas	1	2	3	4	5		
vesias	0.945	0.889	0.827	0.818	0.808		
Sandia							
DTU Stuttgart data							
DTU PLC data (LERWTB)							
LM	ersoior	heavy erosion					
	0.948	0.898					
Classifi	cation ba	used on stall					

Classification based on maximum L/D

														- 							
Partner				-				\sim				Erosion r	ange								
Vortar						1	I	2	V	3			i i	4	1						5
VESLAS						-43.5	Y	-47.6		-53.3				-57.7	1						- 75.3
[100 3	1009	100 15	1403	200 3		<u>/</u>						i	eroded	-						
Sandra	-25	-28.3	-33.8	-39.1	-41.9								1	- 57.5	~						
			7			i				1	P240 4-4		P240 8-8		F 240 15-15		P808-8		P80 15-15		
IDDurind		- i				i	i				-54.8		-56.9		-59.4		-63		-65.9		
IRPWING		1					/								P80 4-4	P404-4		P40 8-8	j	P40 15-15	
		!				Ľ									-60.4	-61.7		-64.3		-67.6	
												120 3ss 3ps			120 8ss 8ps		60 8ss 8ps				
DIO Stuttgart data						1				i		-55.9			-60.2		-62.4				
		1				P400				P120					P40						
DTO PLC data (LERWIB)		1				-43.1	1			-53.6					-59.5						
		, I	erosion		1		Ne:	avy ero	sion												
LIVI			-31.8	1				-47.7	1										Classifi	cotion:	Dublic
			· • • •					~											Giassiii	cation. 1	

8

2. LEE aerodynamic modelling – reverse LE erosion categories

Few decisions:

- 1. L/D has been selected as parameter:
 - It is directly related to the rotor AEP
 - It combines together drag and lift. The first being more sensitive at low angle of attack, the latter at high angle of attack so that the L/D combination is more balanced parameter.
- 2. L/D max has been preferred in this study, although L/D at different operative point could be preferrable
- 3. Percentage drops have been used to have more general trends
- 4. 3 million Re data have been used since more data were available. However, the checks at different values show resemblant values

								Ero	slon levels										
Partner roughness			1		2	3				4					5				
	L/D drop<3	0%		30% <l <44%<="" d="" drop="" td=""><td>44% <l <52%<="" d="" drop="" td=""><td>5</td><td colspan="3">52% <l <57%<="" d="" drop="" td=""><td colspan="5">57% <l <65%<="" d="" drop="" td=""><td colspan="3">L/D drop > 65%</td></l></td></l></td></l></td></l>			44% <l <52%<="" d="" drop="" td=""><td>5</td><td colspan="3">52% <l <57%<="" d="" drop="" td=""><td colspan="5">57% <l <65%<="" d="" drop="" td=""><td colspan="3">L/D drop > 65%</td></l></td></l></td></l>	5	52% <l <57%<="" d="" drop="" td=""><td colspan="5">57% <l <65%<="" d="" drop="" td=""><td colspan="3">L/D drop > 65%</td></l></td></l>			57% <l <65%<="" d="" drop="" td=""><td colspan="3">L/D drop > 65%</td></l>					L/D drop > 65%		
Vector						1	2	3				4							5
VESIAS						-43.5	-47.6	-53.3				-57.7							-75.3
Sandla	100 3	100 9	100 15	140 3	200 3							eroded							
Sandia	-25	-28.3	-33.8	-39.1	-419							-57.5							
									P240 4-4		P240 8-8		P240 15-15		P80 8-8		P80 15-15		
IRPwind									-54.8		-56.9		-59.4		-63		-65.9		
TRP wind													P80 4-4	P40 4-4		P40 8-8		P40 15-15	
													-60.4	-61.7		-64.3		-67.6	
DTI I Stuttgart data										120 3ss 3ps			120 8ss 8ps		60 8ss 8ps				
brostuttgartuata										-55.9			-60.2		-62.4				
DTU PLC data (LERWITE)						P400		P120					P40						
						-43.1		-53.6					-59.5						
IM			erosion				heavy erosion												
LW			-31.8				-47.7												
					A. S.		An Annala Trata and A		-	AN AN AN AN			1	1	- 30				

2. LEE aerodynamic modelling – 5MW test case

Normally, the blades do not appear uniformly eroded. So, the erosion levels identified should be combined to provide a blade-level scenario before the AEP impact can be evaluated.

Aerofoil erosion level	Average L/D drop [%]
1	37
2	48
3	54.5
4	61

Vestas

2. LEE aerodynamic modelling – 5MW test case

	r/R < 60%	60% - 90%	>90%
ade erosion scenario			
Β	Aerofoil erosion severit	y level	
0	0	0	0
Α	0	0	1
В	0	1	1
С	0	1	2
D	0	2	2
E	0	2	3
F	0	2	4

	Aerofoil erosion se	AEP delta			
Configuration	60% < r/R < 90%	r/R > 90%	[%]		
clean (ref)	-	-	-		
oracion A		1	0.2		
erosion A	-	37% L/D drop	-0.3		
oracion D	1	1	1 Г		
erosion B	37% L/D drop	37% L/D drop	-1.5		
oracion C	1	2	17		
erosion c	37% L/D drop	48% L/D drop	-1./		
aracian D	2	2	2.4		
erosion D	48% L/D drop	48% L/D drop	-2.4		
oracion C	2	3	2.5		
erosion E	48% L/D drop	54.5% L/D drop	Public -2.5		
oracian C	2	3	2.7		
erosion F	48% L/D drop	61% L/D drop	-2.7		

The correlation helps identifying best maintenance moment

The exercise shows the connection between rotor level and aerofoil level losses

3. LEP solutions – aerodynamic multidisciplinary challenges

- Several solutions are available on the market such as paints, tapes, shields. With different effectiveness and different costs, they appear to mitigate erosion issues from material point of view.
- However, manufacturing quality is key to make sure they also work from aerodynamic point of view.
- The aerodynamic LE erosion classification will help selecting the best LEP solution for each site/climate. For this however, an aerodynamic model for the LEP is needed.

4. LE erosion mitigation by smarter aerodynamic design

LEE and LEP modelling capability could be used to • mitigate their impact by tailored aerofoil selection/design and/or blade shape optimization

5. Conclusions

- LE erosion plays critical role in wind Industry as it affects the overall performance of the rotor.
- Proper LEE modelling including aerodynamics and acoustic impact, would allow the introduction of optimal maintenance strategies and would help selecting the most effective LEP solution
- Multidisciplinary approach and early selection of the LEP solution would help developing the rotor technology strategy in more effective way to obtain robust performance against erosion

8 September 2024

