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2 ‘ Multi-Lab Assessment of Wind Recycling
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Cooperman et al. 2021

Over two million metric tons of end of life material in U.S. by 2050



4 | Blade Recycling and End of Life Approaches

Future Approaches for
blade designs existing blades
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Are these approaches actually
better for the environment, and what
are the associated challenges?

Are there opportunities to extract higher
value out of retired wind turbine blades?



Life Cycle Inventory

gen TN EEm Emm o Em— RN S B RSN EEE S RSN RSN RSN B RSN EEE REE RS MM RSN RS RSN Em R RS EEm R R M S R M S R S o ey,

-~ ~
7 S N
/ rTT T TG r-TTTTTG FTTTTTSA
/ [ 000: Decommissioning I { 200: Transportation I / 400: Disposal \ \
/ I I I
' e A I I s B I ‘
010: Disassemble O > 210: Truck 410: Incinerate l
I I \ J I s == \ I . J I Ve m_m————mm SN I I
I | ( 100: On-site I | [ 300: Recycling \ |
: ! I I size reduction I I p N | |
Blade on I [ 020: Controlled | f 310: Cement I |
. . 110: Cut . |
turbine I L demolition o | . Co-processing I
| - J |
| 1 |
\ > ) . I
| ———===7 1] |
: C : 120: Separate 320: Mechanical | |
. \ / I
! ! || v l
p 4 \ I
I | 330: Pyrolysis 420: Landfill ] I |
: O—I> 130: Shred . ) I
- |
: \\ — e = [ 340: Microwave | | :
l L Pyrolysis ) I l
| |
4 ]
| 350: High N e e e — |
| Voltage |
I N Fragmentation I
I I
I 360: Fluidized I
Bed
| \ / |
\\ [ 2701 soholysis | 'I> Recycled
N | : S0lVolysis I /' materials
N N /’

~ -

- e e e s e e EE EE o S EEE SEE EEn EEn EEE S SEE SEn GEn EEn EEn SEE SN SEn GEn Ban MEm EEm B SEm M s o O




‘ 3. Energy sources
Process Modeling Typical U.S. Kiln Fuel Mix

Coal (25-50%)
Pet Coke (25-50%)

2. Direct emissions |\ ... . Gas (0-25%)

CO, (fuel combustion) Alternative Fuels (0-15%)
CO, (calcination)

1. Detailed mass balance

Caco3 (1%) FeZOZ (2-4%)
Si0, (81%)
AlLO, (8%)
Fe,0,(3%)

Clay
CaCo, (13%)
Si0, (61%)
ALO, (14%)
Fe,0, (5%)

Ore

. IF L]
Limestone I 310: Cement Co-processing
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Sio, (0.25%) 1 1.77 MI/k 3.84 MI/k InKker
Al,05(0.08%) : 311: Grinding and L Ve /e . Ca0 (65-70%)
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sand Y2 : mixing AlLO, (4-7%)
=2and ! 0.17-0. 52 M)/kg CaCO; > CaO + CO, 23
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Si0, (3%)
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— Electrical grid mix

0.17-0.52 MJ/kg
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Mass Yield Results m

Portion of blade mass
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Glass fiber, thermoset epoxy blade, 1.7 MW, 48.7 m, decommissioned in Texas ‘

Lost or landfilled

Incinerated during process
Oil and gas co-products
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s | Greenhouse Gas Emissions Results

Glass fiber, thermoset epoxy blade, 1.7 MW, 48.7 m, decommissioned in Texas
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enhouse gas emissions
kg CO,eq per blade)

How do we assign credit for recovered materials? DPecommissioning

Recovered material

Virgin material credit

Property of interest

Portion of credit
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Cement Clinker
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Tensile strength
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Heating value
Heating value
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100%
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B Transportation

® On-site size reduction




10 ‘ Greenhouse Gas Emissions Results

Glass fiber, thermoset epoxy blade, 1.7 MW, 48.7 m, decommissioned in Texas
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1 | Greenhouse Gas Emissions Results

Greenhouse gas emissions

(kg CO,eq per blade)

Glass fiber, thermoset epoxy blade, 1.7 MW, 48.7 m, decommissioned in Texas
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Multi-Metric Results

Increased Circularity

Reduced Emissions

Net Greenhouse Gas Emissions
(kg CO,eq per kg recycled material)
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13 1 Multi-Metric Results
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Glass fiber with Blades with Alternative Materials

Thermoset Epoxy (kg)  carbon-Fiber Spar (kg)  Recyclable Resin (kg)
Glass fiber 5,283
Carbon fiber 0

Materials

I
1+ | Alternative Materials m

t 1

Thermoset epoxy resin 2,401

Separable thermoset resin 0

Balsa 416

Gelcoat 180

Adhesive 450

Steel 270

Total mass 9,000 I
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s | Alternative Materials m

. Glass fiber with Blades with Alternative Materials
Materials
Thermoset Epoxy (kg)  carbon-Fiber Spar (kg)  Recyclable Resin (kg)

Glass fiber 5,283 6,224

Carbon fiber 0 Carbon

Thermoset epoxy resin 2,401 fiber

Separable thermoset resin 0

Balsa 416

Gelcoat 180

Adhesive 450

Steel 270 .

Total mass 9,000 i
Larger blade I
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Greenhouse gas emissions
(kg CO,eq per kg recycled material)

Results with Carbon Fiber Spar Cap

Carbon fiber spar blade, 2.82 MW, 62.2 m, decommissioned in Texas
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7 | Alternative Materials

o

Materials

Glass fiber with

Blades with Alternative Materials

Thermoset Epoxy (kg) Carbon-Fiber Spar (kg) Recyclable Resin (kg)
Glass fiber 5,283 6,224 5,283
Carbon fiber 0 1,198 0
Thermoset epoxy resin 2,401 3,685 Recyclable %
Separable thermoset resin 0 0 resin
Balsa 416 839 416
Gelcoat 180 265 180
Adhesive 450 664 450
Steel 270 398 270
Total mass 9,000 13,273 9,000




18 | Recyclable Thermoset Resin Systems
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1. Cement coprocessing and mechanical recycling are promising near-term solutions
=  Decommissioning, downsizing, and transportation bottlenecks exist
=  Market for mechanically recycled products unknown

2. Alternative materials (carbon fiber, recyclable resins) change the landscape
=  Recycled products have higher value
=  Separation and recovery of high quality recycled materials should be prioritized
=  Advanced chemical and thermal methods become necessary

I
19 | Key Takeaways m
I

Bonus insight: Decarbonization of energy and industry has mixed impacts on results



20 ‘ Dissemination of Findings
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Life cycle assessment of wind turbine blade recycling
approaches in the United States

Evan Sproul', Michelle W
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Abstract. Most wind turbine blades reaching end-of-life are sent to landfill where cmbedded
cost, energy, and materials are lost. To avoid landfilling future blades, a broad range of recyeling
and material recovery approaches have been proposed as solutions in the U.S.. cach with benefits,
challenges, and varying levels of technical maturity. The approaches include 1) cement co-
processing, 2) mechanical recycling, 3) pyrolysis, 4) microwave pyrolysis and 5) solvolysis.
While these approaches arc all capable of rccovering various forms of materials for use in
sccondary markets, there are trade-offs between material circularity, reducing harmful
emissions, and for the US. market. Life cycle assessment
(LCA) is a critical step necded to compare these trade-offs and determine where future rescarch
and development should be focused. As a result, some previous LCA has been performed on
recycling approaches. However, attempls to quantify and comparc greenhouse gas emissions
acrossa broad range of technologies have been limited, particularly within the U.S. market where
landfill availability and costs do not hinder disposing of wind blades. This work addresses this
limitation by presenting a detailed comparison of LCA greenhouse gas emissions and material
yields from a range of wind turbine blade recycling approaches in the U.S. The LCA presented
in this work includes bascline results, as well as a varicty of sensitivity and scenario analyses
that look at the impact of process modelling uncertainty, future encrgy mixes, and other critical
input parameters. Overall, results show that mechanical recycling and microwave pyrolysis have
the lowest net greenhouse gas emissions. However, the value of mechanically recycled materials
is highly uncertain, as mechanical recycling generates a mixed feedstock that may underperform
compared to virgin materials. Cement co-processing has higher net emissions than mechanical
recycling or microwave pyrolysis but does gencrate a valuc-added fecdstock that offscts virgin
material from mining for cement production. Other advanced thermal and chemical recyeling
methods such as pyrolysis and solvolysis have higher net emissions due to increased energy
consumption but are also highly sensitive to thermal encrgy sources within the model

Published conference proceedings

Environmental and Economic Assessment of Wind

Turbine Blade Recycling Approaches

Evan G. Sproul'™ Sherif A. Khalife?, Brandon L. Ennis!
!Sandia National Laboratories, Albuquerque, New Mexico, 87123, USA
“National Renewable Energy Laboratory, Golden. Colorado, 0401, USA

Keywords: Glass fiber, carbon fiber, composite. recycling, cost, life cycle assessment
Synopsis: This study characterizes wind turbine blade recycling processes to compare the most

‘promising material recovery approaches and identify those with the most positive environmental

impacts providing for various material streams.

ABSTRACT: Wind energy offers a low emission soure of energy while also being among the
cheapest forms of electricity generation in the United States. While most materials in a wind
turbine can be recycled at the end of life, large composite blades are often treated as waste, leading
to potential strains on regional landfills, a loss of durable materials, and forfeiture of embodied
energy. Numerous approaches exist for recycling composite wind blades at various levels of

technological and commercial maturity. This study uses life cycle assessment to compare several

promising recyd ~oache] 11 as unfiand t i + greenhouse gas
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Journal article (in review)

Technical report (in review)
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