Driving Wind Blade Manufacturing Innovation

Innovation in Materials and Manufacturing

Stephen C. Nolet Senior Director Innovation & Technology TPI Composites, Inc. snolet@tpicomposites.com

Fundamental Design of Composite Wind Blades is REALLY elegant!

(tpi

- Nearly 60 years of large-scale composites manufacturing.
- TPI as an early innovator of infusion technologies:
 - Infusion Technology (SCRIMP®)
 - Textile forms from 24oz Woven Roving to Multiaxials with integrated flow fabrics.
 - Sandwich Construction (balsa and foam core replaces honeycomb).
 - Tooling Systems
 - Integrated Mold Heating and Control
 - Precision A-Surface Control
 - Jigs, Fixtures and Assembly Systems
 - Reuseable Silicone Vacuum Bags
 - Advanced Manufacturing Innovation Initiative (AMII, 2009)
 - Trailing Edge Prefabs
 - 3D Laser Projection (ply-templating)
 - Engineered core
 - Rodpack (precursor of pultruded profiles)
 - More: <u>AMII Final</u>

(tpi

- Nearly 60 years of large-scale composites manufacturing.
- TPI as an early innovator of infusion technologies:
 - Infusion Technology (SCRIMP[®])
 - Textile forms from 24oz Woven Roving to Multiaxials with integrated flow fabrics.
 - Sandwich Construction (balsa and foam core replaces honeycomb).
 - Tooling Systems
 - Integrated Mold Heating and Control
 - Precision A-Surface Control
 - Jigs, Fixtures and Assembly Systems
 - Reuseable Silicone Vacuum Bags
 - Advanced Manufacturing Innovation Initiative (AMII, 2009)
 - Trailing Edge Prefabs
 - 3D Laser Projection (ply-templating)
 - Engineered core
 - Rodpack (precursor of pultruded profiles)
 - More: <u>AMII Final</u>

tpi

- Nearly 60 years of large-scale composites manufacturing.
- TPI as an early innovator of infusion technologies
 - Infusion Technology (SCRIMP®)
 - Textile forms from 24oz Woven Roving to Multiaxia integrated flow fabrics.
 - Sandwich Construction (balsa and foam core replaces
 - Tooling Systems
 - Integrated Mold Heating and Control
 - Precision A-Surface Control
 - Jigs, Fixtures and Assembly Systems
 - Reuseable Silicone Vacuum Bags
 - Advanced Manufacturing Innovation Initiative (AMII, 2009)
 - Trailing Edge Prefabs
 - 3D Laser Projection (ply-templating)
 - Engineered core
 - Rodpack (precursor of pultruded profiles)
 - More: <u>AMII Final</u>

(tpi

- Nearly 60 years of large-scale composites manufacturing.
- TPI as an early innovator of infusion technologies:
 - Infusion Technology (SCRIMP®)
 - Textile forms from 24oz Woven Roving to Multiaxials with integrated flow fabrics.
 - Sandwich Construction (balsa and foam core replaces honeycomb).
 - Tooling Systems
 - Integrated Mold Heating and Control
 - Precision A-Surface Control
 - Jigs, Fixtures and Assembly Systems
 - Reuseable Silicone Vacuum Bags
 - Advanced Manufacturing Innovation Initiative (AMII, 2009)
 - Trailing Edge Prefabs
 - 3D Laser Projection (ply-templating)
 - Engineered core
 - Rodpack (precursor of pultruded profiles)
 - More: <u>AMII Final</u>

(tpi

- Nearly 60 years of large-scale composites manufacturing.
- TPI as an early innovator of infusion technologies:
 - Infusion Technology (SCRIMP®)
 - Textile forms from 24oz Woven Roving to Multiaxials with integrated flow fabrics.
 - Sandwich Construction (balsa and foam core replaces honeycomb
 - Tooling Systems
 - Integrated Mold Heating and Control
 - Precision A-Surface Control
 - Jigs, Fixtures and Assembly Systems
 - Reuseable Silicone Vacuum Bags
 - Advanced Manufacturing Innovation Initiative (AMII, 2009)
 - Trailing Edge Prefabs
 - 3D Laser Projection (ply-templating)
 - Engineered core
 - Rodpack (precursor of pultruded profiles)
 - More: <u>AMII Final</u>

(tpi

Decarbonize & Electrify

7

- The chase for Capacity Factor (C_f) => Larger Blades!
 - Blade length and mass.
 - Blade Perimeter and Area.
 - Impact on Quality.
 - Perishable Materials .
 - Out time versus drive for reduced cycle time
 - Root Attachment.
 - T-Bolts vs Root Inserts
 - Inserts Infusion Complexity
 - Tooling, precision still matters.
 - Bigger blades same tolerances
 - Blade mass increases fatigue concerns.
 - Focus on quality!!!
 - Cycle-Time Impact.
 - 24 hours remain golden standard.
 - Carbon Fiber is a fact of life.
 - Larger blades become stiffness critical.
 - Edge-wise loading -> carbon reinforcement.
 - Modularity.

(tpi

- An opportunity for Owner/Operators.
- A challenge for blade makers!

- The chase for Capacity Factor (C_f) => Larger Blades!
 - Blade length and mass.
 - Blade Perimeter and Area.
 - Impact on Quality
 - Perishable Materials .
 - Out time versus drive for reduced cycle time.
 - Root Attachment.
 - T-Bolts vs Root Inserts
 - Inserts Infusion Complexity.
 - Tooling, precision still matters.
 - Bigger blades same tolerances
 - Blade mass increases fatigue concerns.
 - Focus on quality!!!
 - Cycle-Time Impact.
 - 24 hours remain golden standard.
 - Carbon Fiber is a fact of life.
 - Larger blades become stiffness critical.
 - Edge-wise loading -> carbon reinforcement.
 - Modularity.

(tpì

- An opportunity for Owner/Operators.
- A challenge for blade makers!

- The chase for Capacity Factor (C_f) => Larger Blades!
 - Blade length and mass.
 - Blade Perimeter and Area.
 - Impact on Quality.
 - Perishable Materials .
 - Out time versus drive for reduced cycle time
 - Root Attachment.
 - T-Bolts vs Root Inserts.
 - Inserts Infusion Complexity.
 - Tooling, precision still matters.
 - Bigger blades same tolerances!
 - Blade mass increases fatigue concerns.
 - Focus on quality!!!
 - Cycle-Time Impact.
 - 24 hours remain golden standard.
 - Carbon Fiber is a fact of life.
 - Larger blades become stiffness critical.
 - Edge-wise loading -> carbon reinforcement.
 - Modularity.

(tpi

- An opportunity for Owner/Operators.
- A challenge for blade makers!

(a)

- The chase for Capacity Factor (C_f) => Larger Blades!
 - Blade length and mass.
 - Blade Perimeter and Area.
 - Impact on Quality.
 - Perishable Materials .
 - Out time versus drive for reduced cycle time
 - Root Attachment.
 - T-Bolts vs Root Inserts
 - Inserts Infusion Complexity
 - Tooling, precision still matters.
 - Bigger blades same tolerances!
 - Blade mass increases fatigue concerns.
 - Focus on quality!!!
 - Cycle-Time Impact.
 - 24 hours remain golden standard.
 - Carbon Fiber is a fact of life.
 - Larger blades become stiffness critical.
 - Edge-wise loading -> carbon reinforcement.
 - Modularity.
 - An opportunity for Owner/Operators.
 - A challenge for blade makers!

- The chase for Capacity Factor (C_f) => Larger Blades!
 - Blade length and mass.
 - Blade Perimeter and Area.
 - Impact on Quality.
 - Perishable Materials .
 - Out time versus drive for reduced cycle time
 - Root Attachment.
 - T-Bolts vs Root Inserts
 - Inserts Infusion Complexity.
 - Tooling, precision still matters.
 - Bigger blades same tolerances
 - Blade mass increases fatigue concerns.
 - Focus on quality!!!
 - Cycle-Time Impact.
 - 24 hours remain golden standard.
 - Carbon Fiber is a fact of life.
 - Larger blades become stiffness critical.
 - Edge-wise loading -> carbon reinforcement.
 - Modularity.

(tpi

- An opportunity for Owner/Operators.
- A challenge for blade makers!

- The chase for Capacity Factor (C_f) => Larger Blades!
 - Blade length and mass
 - Blade Perimeter and Area
 - Impact on Quality.
 - Perishable Materials .
 - Out time versus drive for reduced cycle time
 - Root Attachment.
 - T-Bolts vs Root Inserts
 - Inserts Infusion Complexity.
 - · Tooling, precision still matters.
 - Bigger blades same tolerances!
 - Blade mass increases fatigue concerns
 - Focus on quality!!!
 - Cycle-Time Impact.
 - 24 hours remain golden standard.
 - Carbon Fiber is a fact of life.
 - Larger blades become stiffness critical.
 - Edge-wise loading -> carbon reinforcement.
 - Modularity.

(tpi

- An opportunity for Owner/Operators.
- A challenge for blade makers!

Nolet, S.C., "*Evolution of Wind Blade Manufacturing*", Carbon Fiber 23, Composites World, November 2023. *Decarbonize & Electrify* 13

- The chase for Capacity Factor (C_f) => Larger Blades!
 - Blade length and mass.
 - Blade Perimeter and Area.
 - Impact on Quality.
 - Perishable Materials .
 - Out time versus drive for reduced cycle time
 - Root Attachment.
 - T-Bolts vs Root Inserts
 - Inserts Infusion Complexity.
 - Tooling, precision still matters.
 - Bigger blades same tolerances
 - Blade mass increases fatigue concerns.
 - Focus on quality!!!
 - Cycle-Time Impact.
 - 24 hours remain golden standard.
 - Carbon Fiber is a fact of life.
 - Larger blades become stiffness critical.
 - Edge-wise loading -> carbon reinforcement.
 - Modularity.

(tpi

- An opportunity for Owner/Operators.
- A challenge for blade makers!

- Today's Innovations
 - Integration of "prefabrications".
 - Root, Spars, Trailing-Edge & Leading-Edge Prefab's
 - Pultruded Spar Caps
 - Evolution of the RodPack?
 - Model based Manufacturing
 - Ply-by-ply Modeling
 - Core Geometry Extraction, More to do!
 - T-Bolts to root inserts, multitude of methods
 - Increasing root stud density
 - Increasing infusion complexity (and cycle time)
 - What about AUTOMATION???
 - Ply cutting
 - Blade finishing (root drilling, flange trim, surface fairing, scuff sanding/paint prep, robotic painting, etc.)
 - Klingspor

(tpi

- Temple Allen
- Others/Custom
- Automation in molding: It's CT (and cost).
 - Ingersoll, MAG/Fives, Danobat, MTorres

- Today's Innovations
 - Integration of "prefabrications".
 - Root, Spars, Trailing-Edge & Leading-Edge Prefab's
 - Pultruded Spar Caps
 - Evolution of the RodPack?
 - Model based Manufacturing
 - Ply-by-ply Modeling
 - Core Geometry Extraction, More to do!
 - T-Bolts to root inserts, multitude of methods
 - Increasing root stud density
 - Increasing infusion complexity (and cycle time)
 - What about AUTOMATION???
 - Ply cutting
 - Blade finishing (root drilling, flange trim, surface fairing, scuff sanding/paint prep, robotic painting, etc.
 - Klingspor

(tpì

- Temple Allen
- Others/Custom
- Automation in molding: It's CT (and cost).
 - Ingersoll, MAG/Fives, Danobat, MTorres

Today's Innovations

- Integration of "prefabrications".
 - Root, Spars, Trailing-Edge & Leading-Edge Prefab's
 - Pultruded Spar Caps
 - Evolution of the RodPack?
- Model based Manufacturing
 - Ply-by-ply Modeling
 - Core Geometry Extraction, More to do!
- T-Bolts to root inserts, multitude of methods
 - Increasing root stud density
 - Increasing infusion complexity (and cycle time)
- What about AUTOMATION???
 - Ply cutting
 - Blade finishing (root drilling, flange trim, surface fairing, scuff sanding/paint prep, robotic painting, etc.
 - Klingspor

(tpi

- Temple Allen
- Others/Custom
- Automation in molding: It's CT (and cost).
 - Ingersoll, MAG/Fives, Danobat, MTorres

Today's Innovations

- Integration of "prefabrications".
 - Root, Spars, Trailing-Edge & Leading-Edge Prefab's
 - Pultruded Spar Caps
 - Evolution of the RodPack?
- Model based Manufacturing
 - Ply-by-ply Modeling
 - Core Geometry Extraction, More to do!
- T-Bolts to root inserts, multitude of methods
 - Increasing root stud density
 - Increasing infusion complexity (and cycle time)
- What about AUTOMATION???
 - Ply cutting
 - Blade finishing (root drilling, flange trim, surface fairing, scuff sanding/paint prep, robotic painting, etc.)
 - Klingspor

(tpì

- Temple Allen
- Others/Custom
- Automation in molding: It's CT (and cost).
 - Ingersoll, MAG/Fives, Danobat, MTorres

Today's Innovations

- Integration of "prefabrications".
 - Root, Spars, Trailing-Edge & Leading-Edge Prefab's
 - Pultruded Spar Caps
 - Evolution of the RodPack?
- Model based Manufacturing
 - Ply-by-ply Modeling
 - Core Geometry Extraction, More to do!
- T-Bolts to root inserts, multitude of methods
 - Increasing root stud density
 - Increasing infusion complexity (and cycle time)

- What about AUTOMATION???

- Ply cutting
- Blade finishing (root drilling, flange trim, surface fairing, scuff sanding/paint prep, robotic painting, etc.)
 - Klingspor

(tpì

- Temple Allen
- Others/Custom
- Automation in molding: It's CT (and cost).
 - Ingersoll, MAG/Fives, Danobat, MTorres

Klingspor MSS 800 3.0 Blade Sanding System. *Decarbonize & Electrify* Temple Allen EMMA[®] robotic sand, grind, polish robot.

Today's Innovations

- Integration of "prefabrications".
 - Root, Spars, Trailing-Edge & Leading-Edge Prefab's
 - Pultruded Spar Caps
 - Evolution of the RodPack?
- Model based Manufacturing
 - Ply-by-ply Modeling
 - Core Geometry Extraction, More to do!
- T-Bolts to root inserts, multitude of methods
 - Increasing root stud density
 - Increasing infusion complexity (and cycle time)
- What about AUTOMATION???
 - Ply cutting
 - Blade finishing (root drilling, flange trim, surface fairing, scuff sanding/paint prep, robotic painting, etc.)
 - Klingspor

(tpì

- Temple Allen
- Others/Custom
- Automation in molding: It's CT (and cost).
 - Ingersoll, MAG/Fives, Danobat, MTorres

- Additive Manufacturing.
 - Blades and Blade Components.
 - Deposition rate is primary impediment (IMHO).
 - Extensible blade tips (making AM more realistic).
 - TPI engaged with the Labs and Academia on FOA 2960 projects.
 - "Swarm 3D printing"??
 - Tooling

(tpì

- MEGAPRINT
 - Modularity
- What about Core Materials?
 - NREL leading FOA 2252 project, materials challenge?

- Additive Manufacturing.
 - -Blades and Blade Components.
 - Deposition rate is primary impediment (IMHO).
 - Extensible blade tips (making AM more realistic).
 - TPI engaged with the Labs and Academia on FOA 2960 projects.
 - "Swarm 3D printing"??
 - Tooling

(tpì

- MEGAPRINT
 - Modularity
- What about Core Materials?
 - NREL leading FOA 2252 project, materials challenge?

Malo Rosemeier and Matthias Saathoff, Wind Energ. Sci., 5, 897-909, https://doi.org/10.5194/wes-5-897-2020, 2020

- Additive Manufacturing.
 - -Blades and Blade Components.
 - Deposition rate is primary impediment (IMHO).
 - Extensible blade tips (making AM more realistic).
 - TPI engaged with the Labs and Academia on FOA 2960 projects.
 - "Swarm 3D printing"??
 - Tooling

(tpì

- MEGAPRINT
 - Modularity
- What about Core Materials?
 - NREL leading FOA 2252 project, materials challenge?

Fabrication of Fully Recyclable Wind Turbine Blades via Multi-Axis Additive Manufacturing

DOE-FOA-0002960: Large Wind Turbine Materials and Manufacturing Topic #1: Large Wind Blade Additive Manufacturing

- Additive Manufacturing.
 - Blades and Blade Components.
 - Deposition rate is primary impediment (IMHO).
 - Extensible blade tips (making AM more realistic).
 - TPI engaged with the Labs and Academia on FOA 2960 projects.
 - "Swarm 3D printing"??
 - Tooling

(tpi

- MEGAPRINT
 - Modularity
- What about Core Materials?
 - NREL leading FOA 2252 project, materials challenge?

Decarbonize & Electrify

Additive Manufacturing.

- Blades and Blade Components.
 - Deposition rate is primary impediment (IMHO).
 - Extensible blade tips (making AM more realistic).
 - TPI engaged with the Labs and Academia on FOA 2960 projects.
 - "Swarm 3D printing"??

Tooling

(tpi

- MEGAPRINT
 - Modularity
- What about Core Materials?
 - NREL leading FOA 2252 project, materials challenge?

photo: Oak Ridge National Lab & TPI Composites

Additive Manufacturing.

- Blades and Blade Components.
 - Deposition rate is primary impediment (IMHO).
 - Extensible blade tips (making AM more realistic).
 - TPI engaged with the Labs and Academia on FOA 2960 projects.
 - "Swarm 3D printing"??

- Tooling

(tpi

- MEGAPRINT
 - Modularity
- -What about Core Materials?
 - NREL leading FOA 2252 project, materials challenge?

photo: The University of Maine

Decarbonize & Electrify

photo: The University of Maine

Additive Manufacturing.

- -Blades and Blade Components.
 - Deposition rate is primary impediment (IMHO).
 - Extensible blade tips (making AM more realistic).
 - TPI engaged with the Labs and Academia on FOA 2960 projects.
 - "Swarm 3D printing"??

– Tooling

(tpi

- MEGAPRINT
 - Modularity
- What about Core Materials?
 - NREL leading FOA 2252 project, materials challenge?

Additive Manufacturing.

- -Blades and Blade Components.
 - Deposition rate is primary impediment (IMHO).
 - Extensible blade tips (making AM more realistic).
 - TPI engaged with the Labs and Academia on FOA 2960 projects.
 - "Swarm 3D printing"??

- Tooling

(tpi

- MEGAPRINT
 - Modularity
- What about Core Materials?
 - NREL leading FOA 2252 project, materials challenge?

photo: Additive Engineering Solutions & TPI Composites

Manufacturing Control and Quality Improvements: Digital Twins in Manufacturing

- Infusion Simulation
 - Not a novel concept
 - Computationally Intensive
- "Machine Learning-based Online Layup and Infusion Process Monitoring and Feedback for Large Wind Blade Manufacturing" (DOE FOA-2960)
 - Reduced order simulation
 - Coupled with Machine Learning
 Training model to increase fidelity.
 - Real time use of Vision Systems and Al
 - Al informed control/Identify discrepancies (core gaps, reinf waves, etc).
 - Eliminate infusion defects.

(tpì

 Recognize and identify leaks while corrective action is still viable.

Manufacturing Control and Quality Improvements: Digital Twins in Manufacturing

- Infusion Simulation
 - Not a novel concept
 - Computationally Intensive
- "Machine Learning-based Online Layup and Infusion Process Monitoring and Feedback for Large Wind Blade Manufacturing" (DOE FOA-2960)
 - Reduced order simulation
 - Coupled with Machine Learning
 Training model to increase fidelity.
 - Real time use of Vision Systems and Al
 - Al informed control/Identify discrepancies (core gaps, reinf waves, etc).
 - Eliminate infusion defects.

(tpì

 Recognize and identify leaks while corrective action is still viable.

Manufacturing Control and Quality Improvements: Digital Twins in Manufacturing

- Infusion Simulation
 - Not a novel concept
 - Computationally Intensive
- "Machine Learning-based Online Layup and Infusion Process Monitoring and Feedback for Large Wind Blade Manufacturing" (DOE FOA-2960)
 - Reduced order simulation
 - Coupled with Machine Learning.
 - Training model to increase fidelity.
 - Real time use of Vision Systems and AI.
 - Al informed control/Identify discrepancies (core gaps, reinf. waves, etc).
 - Eliminate infusion defects.

(tpì

 Recognize and identify leaks while corrective action is still viable.

Digital Twins in Processing

(tpi

- Typical shell mold > 128 independently controlled zones.
- Cure profiles traditionally applied as uniform temperature setpoints across the area of infused shells.
- Root sections more than 75mm thick while tip sections with face sheets < 1mm.
- Apply cure kinetics models to blade materials, geometry and initial state.
 - Wireless RFID tags (sensors) provide nonintrusive methods to acquire temperature and DoC data.
 - Trained through machine learning with acquired data from multiple experiments.
 - Apply AI methods to direct temperature control.
 - Uniform cure progression and ultimately customer accepted degree of cure (α) across the entire blade.

Digital Twins in Processing

(tpì

- Typical shell mold > 128 independently controlled zones.
- Cure profiles traditionally applied as uniform temperature setpoints across the area of infused shells.
- Root sections more than 75mm thick while tip sections with face sheets < 1mm.
- Apply cure kinetics models to blade materials, geometry and initial state.
 - Wireless RFID tags (sensors) provide nonintrusive methods to acquire temperature and DoC data.
 - Trained through machine learning with acquired data from multiple experiments.
 - Apply AI methods to direct temperature control.
 - Uniform cure progression and ultimately customer accepted degree of cure (α) across the entire blade.

 $E = (-2.303R/D) [d \log_{10} \beta/d(1/T)]$ $Z = \beta E e^{E/RT}/RT^{2}$ $k = Z \exp(E/RT)$ $t_{1/2} = 0.693/k$

Digital Twins in Processing

(tpi

- Typical shell mold > 128 independently controlled zones.
- Cure profiles traditionally applied as uniform temperature setpoints across the area of infused shells.
- Root sections more than 75mm thick while tip sections with face sheets < 1mm.
- Apply cure kinetics models to blade materials, geometry and initial state.
 - Wireless RFID tags (sensors) provide nonintrusive methods to acquire temperature and DoC data.
 - Trained through machine learning with acquired data from multiple experiments.
 - Apply AI methods to direct temperature control.
 - Uniform cure progression and ultimately customer accepted degree of cure (α) across the entire blade.

Digital Twins in Processing

(tpì

- Typical shell mold > 128 independently controlled zones.
- Cure profiles traditionally applied as uniform temperature setpoints across the area of infused shells.
- Root sections more than 75mm thick while tip sections with face sheets < 1mm.
- Apply cure kinetics models to blade materials, geometry and initial state.
 - Wireless RFID tags (sensors) provide nonintrusive methods to acquire temperature and DoC data.
 - Trained through machine learning with acquired data from multiple experiments.
 - Apply AI methods to direct temperature control.
 - Uniform cure progression and ultimately customer accepted degree of cure (α) across the entire blade.

Digital Twins in Processing

(tpi

- Typical shell mold > 128 independently controlled zones.
- Cure profiles traditionally applied as uniform temperature setpoints across the area of infused shells.
- Root sections more than 75mm thick while tip sections with face sheets < 1mm.
- Apply cure kinetics models to blade materials, geometry and initial state.
 - Wireless RFID tags (sensors) provide nonintrusive methods to acquire temperature and DoC data.
 - Trained through machine learning with acquired data from multiple experiments.
 - Apply AI methods to direct temperature control.
 - Uniform cure progression and ultimately customer accepted degree of cure (α) across the entire blade.

Digital Twins in Processing

- Typical shell mold > 128 independently controlled zones.
- Cure profiles traditionally applied as uniform temperature setpoints across the area of infused shells.
- Root sections more than 75mm thick while tip sections with face sheets < 1mm.
- Apply cure kinetics models to blade materials, geometry and initial state.
 - Wireless RFID tags (sensors) provide nonintrusive methods to acquire temperature and DoC data.
 - Trained through machine learning with acquired data from multiple experiments.
 - Apply AI methods to direct temperature control.
 - Uniform cure progression and ultimately customer accepted degree of cure (α) across the entire blade.

(tpi

Digital Twins in Manufacturing/Production

- Multi-work cell environment spread over > 500k ft² of workspace.
- Modeling production cycle (workflow process mapping) is common, but output is seldom realized:
 - Cycle-time dependent on of availability of resources:
 - Labor, equipment, fixtures and jigs.
 - Output/capacity is a set of highly couple dependencies.
 - **Discrete Event Simulation** is able to capture these dependencies and predict factory capacity.
 - Identify resource bottlenecks

(tpi

- Optimize labor and CAPEX utilization to maximize capacity.
- Incorporate random perturbations AND impact of automation.
- Real-time tracking of resources in plant, status of multi-cell progress.
 - Using these inputs to re-shuffle production model and maximize capacity
 - Identify bottlenecks, resolve equipment competition and reduce wait time
 - Increase both CAPEX and labor utilization.
 - RFID tags to monitor equipment location.
 - Machine learning combined with AI methods for constant improvement

Digital Twins in Manufacturing/Production

- Multi-work cell environment spread over > 500k ft² of workspace.
- Modeling production cycle (workflow process mapping) is common, but output is seldom realized:
 - Cycle-time dependent on of availability of resources:
 - Labor, equipment, fixtures and jigs.
 - Output/capacity is a set of highly couple dependencies.
 - Discrete Event Simulation is able to capture these dependencies and predict factory capacity.
 - Identify resource bottlenecks

tpi

- Optimize labor and CAPEX utilization to maximize capacity.
- Incorporate random perturbations AND impact of automation.
- Real-time tracking of resources in plant, status of multi-cell progress.
 - Using these inputs to re-shuffle production model and maximize capacity
 - Identify bottlenecks, resolve equipment competition and reduce wait time
 - Increase both CAPEX and labor utilization.
 - RFID tags to monitor equipment location.
 - Machine learning combined with AI methods for constant improvement.

Dassault's *DELMIA* 3DExperience factory flow simulation: managing resources.

Finally: A Trained Workforce is REALLY Hard to Build

- Virtual Reality (VR) and Augmented Reality (AR) in Blade Manufacturing.
 - Developing a more capable workforce.
 - -Real time resource availability.
 - Work Instructions and visual guides.
 - Cycle-time management.
- Vinci-VR is developing on experiential training using virtual reality.
 - Grant from the Massachusetts Clean Energy Center (Mass CEC).
 - https://www.vinci-vr.com

(tpì

