

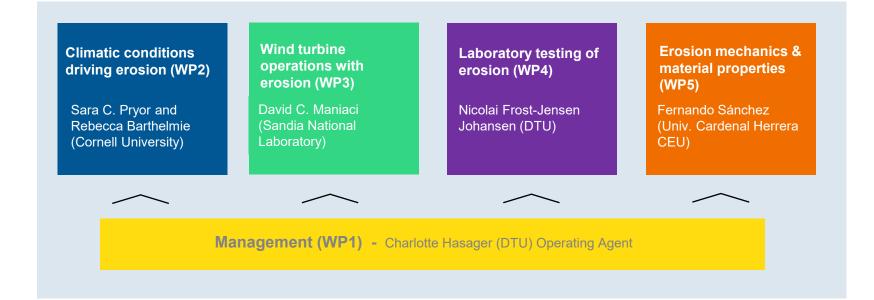
IEA Task 46 Erosion of Wind Turbine Blades

Charlotte Bay Hasager (DTU)

Operating Agent.

Technology Collaboration Programme

Sandia Blade Workshop 17-18 September 2024, Albuquerque, New Mexico, USA


The Purpose of This IEA Wind Task is to:

- improve understanding of the erosion driving factors,
- develop datasets and model tools to enhance prediction of leading-edge erosion likelihood,
- identify damage at the earliest possible stage and,
- advance potential solutions.

Coordination

Questions For All of You

1) What challenges do you foresee on blade erosion 10 years from now?

Mentimeter – Results From the Survey (September 18, 2024)

EA Wind TCP

Join at menti.com | use code 5199988

4.2

5.2

What challenges do you foresee on blade erosion 10 years from now?

Weather conditions in emerging markets poorly known

Higher tip speeds of novel turbines will increase blade erosion

Cost effective coating solutions will not be available

O&M costs increase for the fleet of existing wind farms

Blade aerodynamics performance cause loss of energy production due to erosion

Scaling up offshore wind installations rapidly will increase blade erosion

Strongly disagree

Strongly agree

Technology by lea

IEA task 46 webinar 31 May 2022

1 3:57 2 questions 33 of 39 (84%) participated

 What challenges do you foresee on blade erosion 10 years from now? (Multiple Choice) * 33/33 (100%) answered

Weather conditions in emerging markets poorly known	(13/33) 39%
Higher tip speeds of novel turbines will increase blade erosion	(20/33) 61%
Cost effective coating solutions will not be available	(7/33) 21%
O&M costs increase for the fleet of existing wind farms	(16/33) 48%
Blade aerodynamic performance cause loss of energy production due to erosion	(16/33) 48%
Scaling up offshore wind installations rapidly will increase blade erosion	(20/33) 61%

Which concepts have the highest potential to tackle blade erosion? (Multiple Choice) *
 33/33 (100%) answered

Wind farm planning, e.g. site specific erosion assessment maps	(10/33) 30%
Blade design, e. g. new coating materials	(32/33) 97%
Blade design, e. g. blade design for lower tip speed	(5/33) 15%
O&M, e. g. cost effective inspection	(6/33) 18%
O&M, e. g. cost effective service and repair	(16/33) 48%
Wind turbine control, e. g. erosion safe operation	(11/33) 33%
Disruptive innovation tackling blade erosion 100%	(14/33) 42%

Participants

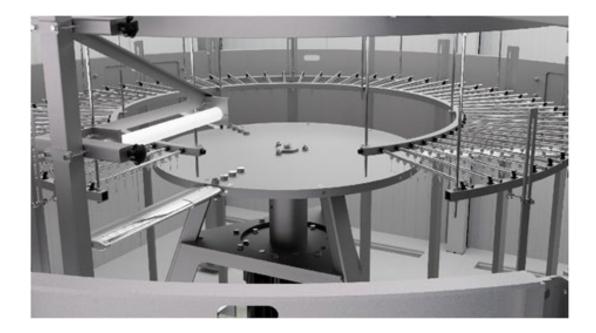
- The work plan is delivered by 41 organizations from 12 countries:
 - 1 certification body
 - 8 wind farm owners
 - 2 consultancy
 - 4 wind turbine manufacturers
 - 7 coating manufacturers
 - 19 academic/R&D organizations

Country	Contracting Party	Participant Organization
Belgium	Belgian Ministry of Economy	Engie
Canada	Natural Resources Canada	WEICan
Denmark	Danish Energy Agency	DTU , Hempel, Ørsted, PowerCurve
Finland	Business Finland	VTT
Germany	Federal Ministry for Economic Affairs and Energy	Fraunhofer IWES , Covestro, Emil Frei (Freilacke), Nordex Energy SE, DNV, Mankiewicz, RWE, Henkel
Ireland	Sustainable Energy Authority of Ireland	South East Technological University, University of Galway, University of Limerick
Japan	New Energy and Industrial Technology Development Organization	AIST, Osaka University, Tokyo Gas Co. Asahi Rubber Inc.
Netherlands	Netherlands Enterprise Agency	TU Delft, TNO
Norway	Norwegian Water Resources and Energy Directorate	Equinor, University of Bergen, Statkraft
Spain	Centre for Energy, Environmental and Technological Research	Aerox, CENER, Nordex Energy Spain, Siemens Gamesa Renewable Energy, Universidad Cardenal Herrera - CEU
UK	Offshore Renewable Energy Catapult	ORE Catapult, University of Bristol, Lancaster University, Imperial College, Vestas UK, Ilosta
US	US Department of Energy	Cornell University, Sandia National Laboratories, 3M

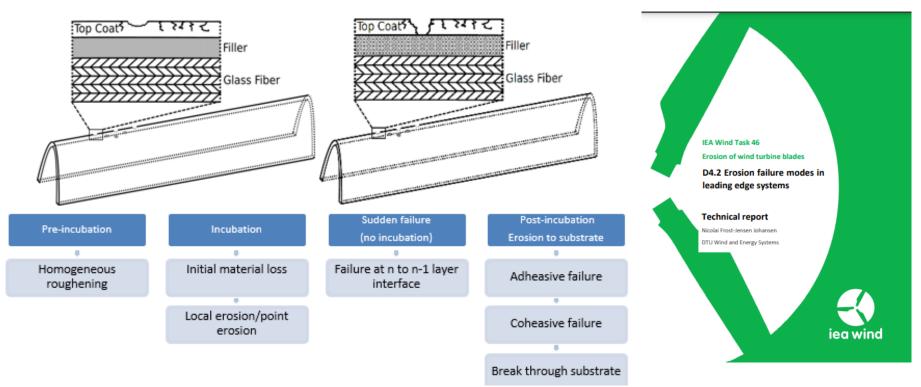
Who Can Participate in Task 46?

Technology Collaboration Programme

https://iea-wind.org/task46


IEA Task 46 Phase 1 and Phase 2

- Phase 1 started 15 March 2021 and end 14 March 2025
- Phase 2 starts 15 March 2025 and end 14 March 2029


R&D Rain Erosion Tester

Technical Results – Technologies For Lab Erosion Testing

Technology Collaboration Programme

Laboratory Testing of Erosion

- Johansen, N. F.-J., Erosion failure modes in leading edge systems (06/2023)

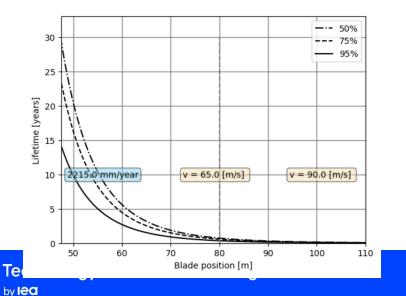
3.1 Pre incubation - Homogeneous roughening

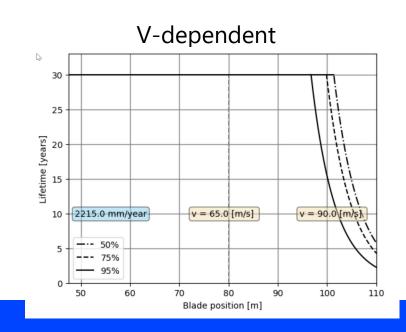
Description	Defect Appearance	3.2 End of Incubation - Initial material removal			
The defect type is characterized by morphology change with little to none material removal. Typically seen on homogeneous	The appearance is very dependent on the material, on metallic surfaces it is seen as a	Description	fect Appearance	Description	Defect Appearance
In the to none material removal. Typically seen on homogeneous materials. It is usually the first defect appearing during a RET. As can be seen on the illustration, the rough/matt appearance occur because of crack formation in the n layer (LEP). These cracks results in reflected light being diffused giving rise to the matt appearance	loss of gloss. On Clear coatings it can be seen as cracks normal to the surface as illustrated Interchangeable defects	The defect is characterized by local material loss and is usually the starting point of erosion development. The damage is within a confined area without connecting to n la	fect size is equal to coating thickness squared or laller. The damage is entirely confined to the outer ayer with no penetration erchangeable defects	exposing an underlying layer. This is usually the starting point of erosion development. The damage is within a confined area without connecting to preexisting erosion. Within this area, the defect can	Defect size is equal to coating thickness squared or larger. The damage has removed part of the n layer exposing the n-1 layer. Typically, underfying layers have different colors to the top coating. This makes this type of damage. relatively easy to identify. And Interchangeable defects
Affecting layers Coating specific layer name Laver Laver Laver Laver Laver Laver Laver Laver Lave Laver Lave	This type of defect is similar to initial material removal. Can also look like point erosion.	Affecting layers Example of coating specific layer	 Homogeneous roughening – distinct spots with clear difference from the neighboring area Local erosion – Limited to single layer 	Affecting layers Example of coating specific layer	Initial material removal Homogeneous roughening
number n n-1 n-2 0 -1	Approximate IEA erosion severity Level:	name Layer a 1 a 2 0 1 dar		name	Approximate IEA erosion severity Level:
Affecting x	0: 28% 1:29% 2 3 ^{4:29%} ^{5:} 15%	number n n-1 n-2 0 -1 App	proximate IEA erosion severity Level: 29% 1: 2: 3 4:28 6:14% 14% 3 9% 5:14%	number II II-1 II-2 0 -1 Affecting layers x x (x)	0: <u>1:29%</u> 2:14% <u>3:14%</u> 4:29% 5: 14%
Illustration 1	2	Example images	1470 1470 70	Illustration	1 2
HINTE ayer 2 ayer 1 ayer 1 ayer 3 ayer 1 ayer 3 ayer 1 ayer 3 ayer 4 ayer 4 ayer 2 ayer 1 ayer 1 aye		Illustration 1	2	The first of the f	

Classification system to better indentify incubation damages and seperate rain erosion test failure modes

Technology Collaboration Programme

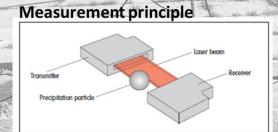
VN-curve Based RET Testing





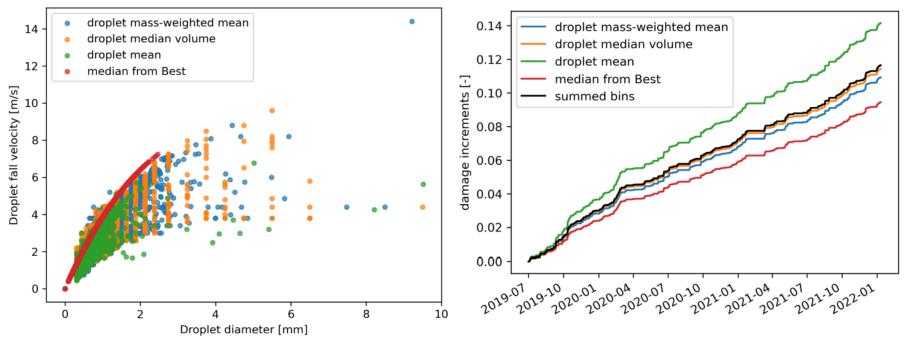
Open Software

- Python-Jupyter notebook implementation of DNV-GL 0573
 - Improved regression analysis
 - High impact on predicted lifetimes
 - N-dependent



From Lab to Field Data

Laser optical disdrometers/present weather sensors:

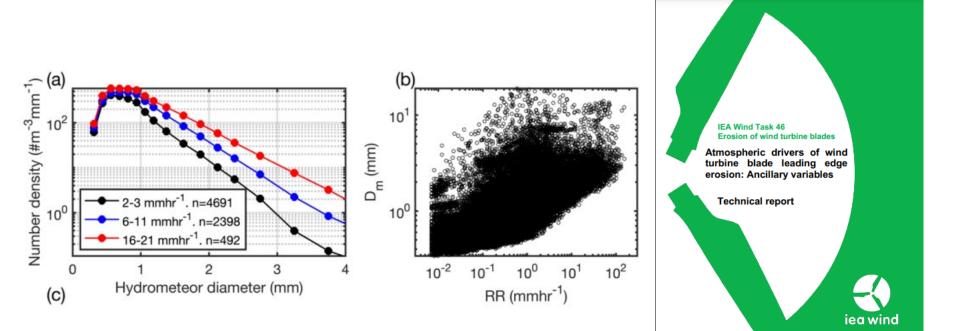

- Outputs ~ 1000 values/minute:
- 1. Rain intensity
- 2. Weather code (precipitation type)

OTT Parsivel²

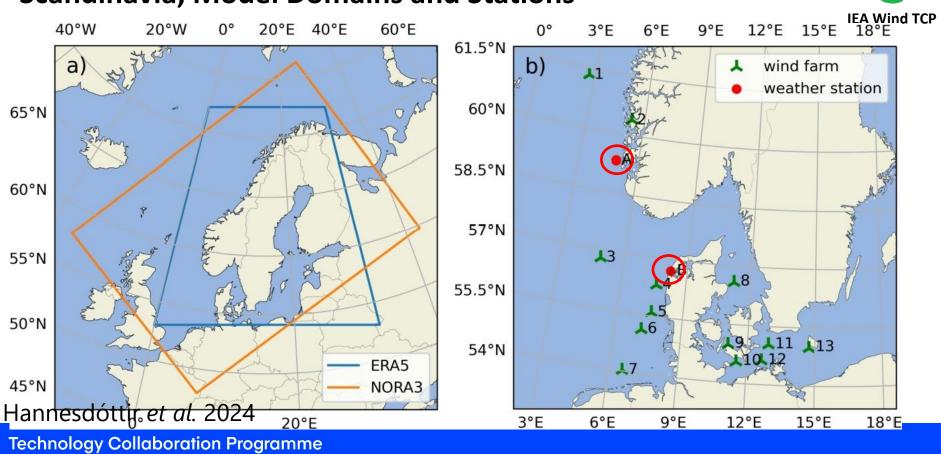
- 3. Droplet diameter
- 4. Droplet velocity

Disdrometer Data From 2.5 Years at DTU Risø

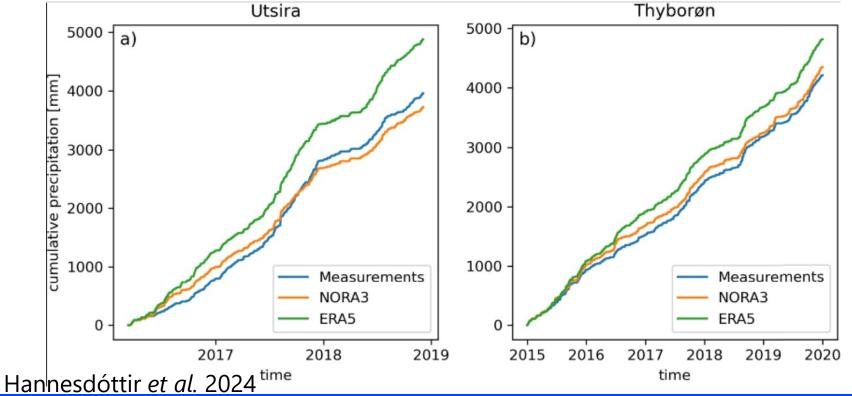
Hannesdóttir et al. 2024 J. Phys.: Conf. Ser. 2767 042024



Technology Collabord


Technical Results – Atmospheric Drivers of Erosion

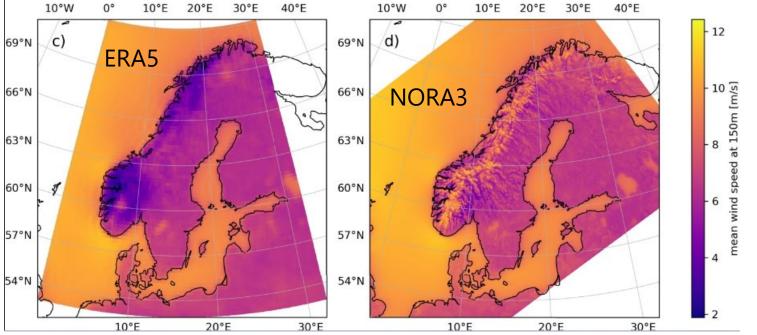
Erosion Risk Atlas



Scandinavia, Model Domains and Stations

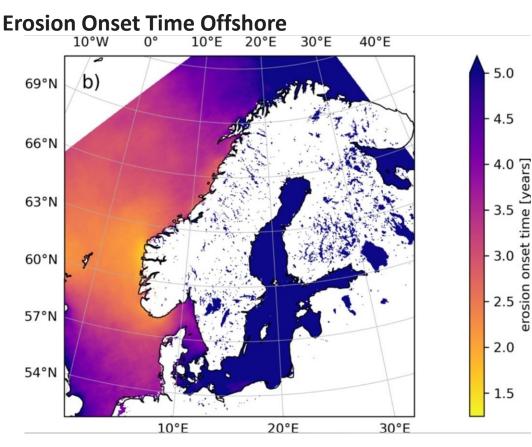
by lea

Comparison of Cumulative Rainfall



Technology Collaboration Programme

by lea


The Annual Average Wind Speed at 150 m

Hannesdóttir et al. 2024

Technology Collaboration Programme

NORA3 meteorological data, the IEA 15 MW wind turbine and a commercial blade material.

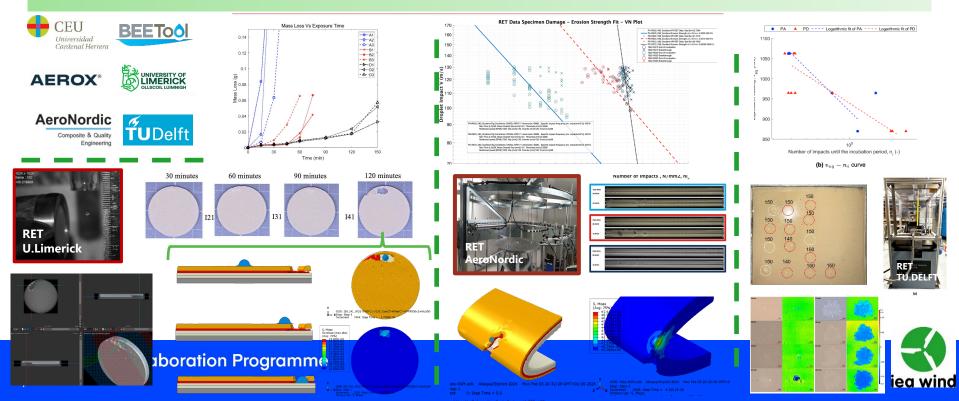
Hannesdóttir et al. 2024

Technology Collaboration Programme

On Erosion Classification System

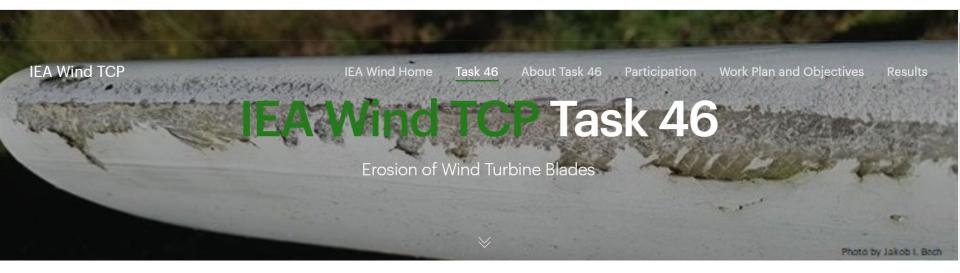
Mass Loss Visual Condition Aerodynamic Structural Integrity Performance Levelo Leading Edge Erosion Prediction Category 5 LEP Coating - Initial Estima 250 ·Laminate - Initial Estimate Region 2 Category 4 Region 2.5 Region 3 Coating - Updated Function based on inspectio Laminate - Updated Function based on inspectio Variable Rotation Constant Rated Power Inspection Level 1 Speed Rotation Speed Topcoat 200 Maximize CP Level 2 (kw) Filler £ 120 **Erosion Category** పై 150 Category 3 100 -Category 0 Level 3 Category 2 **Biaxial Layers** Category 3 Level 4 100 Category 4 UD Layers 50 Levels Turbine Lifetime (Years) 10 12 14 Wind Speed (m/s) Report contains many Prediction of future erosion Detailed description of Power loss is defined in visual examples of level progression. severity level definitions Region 2 of the power curve. and thresholds. categories of blade and

LEP damage.


Technical Results – Erosion Classification System

	Severity Level					
Evaluation Criteria	0	1	2	3	4	5
Visual Condition (LEP)		Lightly worn external coating/LEP Instances of reduced LEP adhesion	localized damage on external coating/LEP	LEP is largely compromised over a large area and no longer providing protection to underlying layers	Delamination of topcoat with immediate layer underneath clearly visible and exposed	Notable damage to substrate
Visual Condition (No LEP)	Initial	Erosion barely visible or pinholes	Localized pitting	Widespread or coherent pits, some gouges		
	factory condition	Coating <10% Laminate 0%	Coating 10-50%, Laminate 0%	Coating 50-100%, Laminate <10%	Coating 100% Laminate 10-100%	Coating 100%, Laminate 100%
Aerodynamic Performance		Normal surface roughness Region 2 Power loss 0 -1%	Region 2 Power loss 1%-2%	Region 2 Power loss 2%-3%	Region 2 Power loss 3-4%	Region 2 Power loss >4%
Blade Integrity		Initial erosion of topcoat	Erosion through topcoat	Initial exposure of immediate laminate layers	Erosion through immediate laminate layers	Exposure of structural laminate layers

Damage Models Based on Fundamental Material Properties


- ✓ Test data for UV degradation combined weathering and RET; different chemistry comparison
- Damage progression analysis based on 1) images V-N curves, 2) intermediate mass loss measurements and
 3) micro-CT and 3D scanner for damage progression based on intermediate geometry evolution

`D

https://iea-wind.org/task46/

Technology Collaboration Programme

Acknowledgements

- EUDP for funding of the IEA task 46, Erosion of wind turbine blades grant J.nr. 64021-0003.
- European Commission's Horizon Europe funding with Grant agreement ID: 101083716 for the financial support of the AIRE project.
- "Estimation and Prevention of Erosion on Off-Shore Wind Turbine Blades" (<u>102235103</u>) funded by the Academia Agreement between the University of Bergen and Equinor.
- U.S. Department of Energy via a sub-contract to Sandia National Laboratory and grant (DE-SC0016605), plus NASA grant #80NSSC21K1489.
- ACTRIS-DK: The Aerosol, Clouds and Trace gases Research Infrastructure Denmark
- Innovation Fund Denmark Grand Solutions projects, Grant <u>6154-00018B</u> "EROSION" and Grant <u>9067-00008B</u> "Blade Defect Forecast".

Thank you!

IEA Wind TCP functions within a framework created by the International Energy Agency (IEA). Views, findings, and publications of IEA Wind do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries. IEA Wind is part of IEA's Technology Collaboration Programme (TCP).

Contact Operating Agent: Charlotte Hasager (cbha@dtu.dk)