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ROSEI team: wind energy

In-silico wind farm Large-Eddy-Simulations using the JHU-LES code
Simulation details: Stevens, R. ., Gavme, D. F., & Meneveau, C. (2016).
Wind Energy, 19, 359-370. Visualization: D. Brock (Extended Services, XSEDE)
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Wind farm power tracking

Y 3
Oy [ .
t & Generation

* Secondary frequency regulation is an important grid Load :
service that requires power tracking A

F, = scheduled bulk power r(t) = regulation signal

P . (t) = reference signal
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* Reduce bulk power supply (i.e. do not maximize power output) P, =(1-a)P,
e Derate the turbine by some percentage a x100%

* I|deally up-ramp capability (upramp) ¥ >« (derate)



Frequency regulation: Challenges

* Direct economic trade-off between bulk power supply and regulation
— ldeally up-ramp capability ¥ >« (derate) Not possible with a single turbine

* Individual turbine control (i.e., failure to take wake effects into account) even with
y=q fails even in small farms (except if y<< a e.g., van Wingerden et al. 2017)
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* Previous work using dynamic models that account for wake propogation have reduced
required derates e.g., Shapiro et al. 2017, 2018, 2019; Vali et al 2018



Power tracking control

* Previous work using dynamic models that account for
wake propogation have reduced required derates e.g.,
Shapiro et al. 2017, 2018, 2019; Vali et al 2018

* Pitch control can saturate in power tracking applications
due to finite control authority

Genevieve Starke
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Yawing turbines

* Yawing turbines has been shown to increase power output
e.g. Howland et al. 2019, 2022, Fleming et al. 2017, Gebraad et al. 2016, Campagnolo et al. 2016

z/D z/D
Figure adapted from Howland et al. 2019 demonstrating yaw optimization for power maximization

 Mostly in static setting and not taken in the timescales associated with
dynamic yawing behavior (e.g. rate of yawing) the behavior of the farm as the

effect of yaw actions propagate downstream
* |dea: use yaw to increase control authority in power tracking applications
— Previously demonstrated in power maximization and tracking that did not
aim to reduce derates e.g., Munters & Meyers 2018, Boersma et al 2019a, 2019b



Yaw augmented power tracking

* Inner-outer loop control Yaw,y | WindFarmLES | p )
architecture

e Quter loop

* model-constrained optimal

Pitch PI controller

control for the yaw i pr— ok P
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* Innerloop | Rl
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Inner loop: Pl pitch control

* Control local thrust coefficient as a proxy for pitch Wind Farm LES
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Incorporating power changes due to yaw actions

* Changes in power due to yaw are incorporated faw y [ WidRemLES | poo
into the inner loop as a feedforward term )

— linear approximation for the change in the

thrust around the cosine the angle change o
iy ; - Py,
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Outer loop yaw control (initial implementation)

e Optimize the cost function for a single yaw angle
for each control period

Ty Ty: time horizon

J(y) = J(PG _Pref )2 df y: turbine yaw

T,: Yaw update interval
0

* Trade off: Easier to implement but less efficient
and requires more updates for accuracy

Wind Farm LES
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Computing time-dependent yaw angles

 Graph model of a wind farm (extends the approach in Annoni et al. 20193, 2019b)

If a turbine is in the wake of
another turbine, a directed edge
is added to the graph
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gdge (75 ]l
<)

Each turbine is a node
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Q(/V, (f) A : Nodes (turbines)

& : Edges (wake interactions)

e Divide the farm into weakly-connected subgraphs based on a leader (node)
turbine Q(‘/I/)((:) — {glagza'”agm}



Generating a graph of an arbitrary wind farm geometry

* Define local turbine areas using Voronoi tessellation
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Generating a graph of an arbitrary wind farm geometry

* Define local turbine areas using Voronoi tessellation

e Given an initial wind direction

e Lead turbines and interconnections are
defined based on the cells crossed as one
traverses to the front of the farm

* The wakes are defined using a linear wake
growth (e.g. Jensen 1983 model)

y [km]




Generating a graph of an arbitrary wind farm geometry

* The turbine wakes are described using linear wake growth
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Change in wind farm condition = new graph topology
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State dynamics
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State Update Map @, =0 +E, .

Up 5.

» States: deficits between turbine pairs ¢’ —
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* Deficit model needs to account for deflection and curling of the wake

(c) Howland et al (2016)

Wind turbine
yaw




Dynamic graph for yawing turbine

LinearMap © =0 +F,

Normalized deficits at turbine i due to turbine j based on
analytical curled model Bastankhah et al, 2021
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Dynamic graph for yawing turbine

LinearMap © =0 +F,

Normalized deficits at turbine i due to turbine j based on
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gure from Bastankhah et al, 2021

Solid lines: model results; symbols: LES results for different yaw angles



State update map @, ,, =0 +E,

Event Driven Input £, (@, .7, ,,AE, ) té:)]l -
/= DAT/ Edge weights based on delays associated with ) *
oo U information propagation over each edge AT) = | 1_) xi|

Age,k . a list of the edge changes

* System graph changes each timestep k (e.g. wind direction change over N timesteps)
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System of equations

Update map D, =AD +E,

System output a,.,=Nz,)D,. (7))

Velocity at each turbine (disk velocity)

Cr
Ud,k+1 :Uoo(l_akﬂ)(l_ 4+2 ,J
T

Linear wake superposition

Turbine power output

1 1 ,
P==p|l=—xzD* U C
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Yaw model validation: static case

e Static study using JHU LESGO code (Open source code at: https://github.com/lesgo-jhu)

SOWFA Simulation Series I:
yaw angle ~, 1s varied
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Figure from Gebraad et al. 2016
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[Starke et al. 2023]



https://github.com/lesgo-jhu

Dynamic yaw model validation
* Dynamically yaw the first turbine 15 degrees at 150 s
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[Starke et al. Preprint]



Yaw augmented power tracking

* Inner-outer loop control Yaw,y | WindFarmLES | p )
architecture

e Quter loop
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Preliminary control test case

3 test signals (8% regulation)

18-turbine LES wind farm
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Frequency regulation results (preliminary)
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— Pref Cr

Time [min]

Signal Type

4% derate

2% derate

0% derate

Yaw <+ | Pitch Yaw -+ | Pitch Yaw 4+ | Pitch
Pitch Pitch Pitch
RegA 0.90 0.82 0.84 0.85 0.90 0.93
RegD 0.82 0.84 0.85 0.92 0.97 1.01 [Starke et al. ACC 2023]




Yaw augmented pitch control (preliminary conclusions)

* Overall use of yaw for power tracking is complicated by the
timescales (yaw is slow)

* Yaw seems to have added benefit when derates are lower

— Noted benefit if the system is using greedy control (maximum thrust
(a)

coefficient) 2

* Implementation of receding horizon approach in yaw loop may
improve these results

— New approaches needed
— Computational trade-off needs to be examined
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