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Wind farm power tracking
• Secondary frequency regulation is an important grid 

service that requires power tracking
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ref ( ) reference signalP t = 0 scheduled bulk powerP = ( ) regulation signal  r t =

maxP Pγ∆ =
Up- ramp

• Reduce bulk power supply (i.e. do not maximize power output)
• Derate the turbine by some percentage 

• Ideally up-ramp capability (upramp) γ >α (derate)
100%α ×

0 (1 ) maxP Pα= −
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Frequency regulation: Challenges
• Direct economic trade-off between bulk power supply and regulation

– Ideally up-ramp capability γ >α (derate) Not possible with a single turbine
• Individual turbine control (i.e., failure to take wake effects into account) even with 

γ =α fails even in small farms (except if γ << α e.g., van Wingerden et al. 2017)

• Previous work using dynamic models that account for wake propogation have reduced 
required derates e.g., Shapiro et al. 2017, 2018, 2019; Vali et al 2018

Fleming et al 2016
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Power tracking control
• Previous work using dynamic models that account for 

wake propogation have reduced required derates e.g., 
Shapiro et al. 2017, 2018, 2019; Vali et al 2018

• Pitch control can saturate in power tracking applications 
due to finite control authority

Genevieve Starke
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Yawing turbines
• Yawing turbines has been shown to increase power output           

e.g. Howland et al. 2019, 2022 , Fleming et al. 2017, Gebraad et al. 2016, Campagnolo et al. 2016

• Mostly in static setting and not taken in the timescales associated with 
dynamic yawing behavior (e.g. rate of yawing) the behavior of the farm as the 
effect of yaw actions propagate downstream

• Idea: use yaw to increase control authority in power tracking applications 
– Previously demonstrated in power maximization and tracking that did not 

aim to reduce derates e.g., Munters & Meyers 2018, Boersma et al 2019a, 2019b

Figure adapted from Howland et al. 2019 demonstrating yaw optimization for power maximization
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Yaw augmented power tracking
• Inner-outer loop control 

architecture
• Outer loop 

• model-constrained optimal 
control for the yaw

• Inner Loop
• PI pitch controller

Wind Farm LES

Optimization Solver

Cost Function Graph Model

( )farmP t,Yaw γ

( )farmP t

Outer Loop:
Yaw optimal controller

TC ′

Inner Loop: 
Pitch PI controller

( ) ( )
ki

T p P i P
T

C k e t k e dτ τ′∆ = + ∫

TC ′
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Inner loop: PI pitch control
• Control local thrust coefficient as a proxy for pitch

• Use measurements to distribute power reference 
across the turbines

, , ,( ) ( )
ki

T i p P i i P i
T

C k e t k e dτ τ′∆ = + ∫
Wind Farm LES

( )farmP t

( )farmP t

Pitch PI controller

( ) ( )
ki

T p P i P
T

C k e t k e dτ τ′∆ = + ∫

TC ′

𝑘𝑘𝑝𝑝, 𝑘𝑘𝑖𝑖: Proportional and integral gain

𝑇𝑇𝑘𝑘𝑖𝑖: integral time 
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Incorporating power changes due to yaw actions 
• Changes in power due to yaw are incorporated 

into the inner loop as a feedforward term
– linear approximation for the change in the 

thrust around the cosine the angle change

,( ) ( )
ki

T p P i
T

TP CC k e t k e d γτ τ ′+ ∆′∆ = + ∫

[ ]2, 1cos( ) )
cos(

o
)

c s(T
T

CC γ γ
γ γ′∆

′∆
= −

∂
∂
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Outer loop yaw control (initial implementation)

( )2

0

( )
H

GM f

T

reJ P P dtγ
 

= −  
 
∫

• Optimize the cost function for a single yaw angle 
for each control period

• Trade off: Easier to implement but less efficient 
and requires more updates for accuracy

𝑇𝑇𝐻𝐻: time horizon
𝛾𝛾: turbine yaw
𝑇𝑇𝛾𝛾: Yaw update interval
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Computing time-dependent yaw angles
• Graph model of a wind farm (extends the approach in Annoni et al. 2019a, 2019b)

• Divide the farm into weakly-connected subgraphs based on a leader (node) 
turbine

Node 1

Node 2

( )G N,E N
E

: Nodes (turbines)

: Edges (wake interactions)

If a turbine is in the wake of 
another turbine, a directed edge 
is added to the graph
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Each turbine is a node

( ) { }1 2, , , mg g g= G N,E
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Generating a graph of an arbitrary wind farm geometry
• Define local turbine areas using Voronoi tessellation
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Generating a graph of an arbitrary wind farm geometry
• Define local turbine areas using Voronoi tessellation

• Given an initial wind direction
• Lead turbines and interconnections are 

defined based on the cells crossed as one 
traverses to the front of the farm

• The wakes are defined using a linear wake 
growth (e.g. Jensen 1983 model)
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Generating a graph of an arbitrary wind farm geometry
• The turbine wakes are described using linear wake growth

0.0625wk =
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Change in wind farm condition = new graph topology  
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A dynamic yaw change
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State dynamics

• States: deficits between turbine pairs

• Deficit model needs to account for deflection and curling of  the wake 

1 2 3 1 1
1 1 1 1 2

TN N N
k N Nφ φ φ φ φ φ φ− Φ =   

1 kk k E+Φ = +Φ
𝑈𝑈∞

𝑖𝑖𝑗𝑗State Update Map
j

iφ
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Dynamic graph for yawing turbine

Normalized deficits at turbine i due to turbine j based on 
analytical curled model Bastankhah et al, 2021

𝑈𝑈∞
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Dynamic graph for yawing turbine

Normalized deficits at turbine i due to turbine j based on 
analytical curled model Bastankhah et al, 2021
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( , ) 0.4 ( , )x k x xσ θ ξ θ= + wake shape over distance, polar angle

Solid lines: model results; symbols: LES results for different yaw angles

Figure from  Bastankhah et al, 2021
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State update map 

𝑖𝑖, 𝑥𝑥𝑖𝑖
𝑢𝑢𝑗𝑗

Δ𝑇𝑇𝑖𝑖
𝑗𝑗 =

𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖
𝐷𝐷

1k k kE+Φ = Φ +

• System graph changes each timestep k (e.g. wind direction change over N timesteps)

Initial wind 
direction

Wind direction change 
over N update steps

1 kk k E+Φ = +Φ

, ,, , , )( e k e ekk kE τΦ ∆Event Driven Input

,( ) :
j

j i
k i

j

D T
u

τ ∆
=

, :e k∆

Edge weights based on delays associated with 
information propagation over each edge

a list of the edge changes
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System of equations

, 1 1(1 ) 1
4

T
d k k
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 ′
= − − 

 ′+ 

System output 

Velocity at each turbine (disk velocity)

Linear wake superposition

1 ( ) ( )k k k kα τ τ+ Φ= Λ
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2 4 d kk PP D U Cρ π
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Turbine power output

Update map
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Yaw model validation: static case
• Static study using JHU LESGO code  (Open source code at: https://github.com/lesgo-jhu) 

Figure from Gebraad et al. 2016
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[Starke et al. 2023]
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Dynamic yaw model validation
• Dynamically yaw the first turbine 15 degrees at 150 s

JHU LESGO code phase-averaged over 120 realizations

[Starke et al. Preprint]
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Yaw augmented power tracking
• Inner-outer loop control 

architecture
• Outer loop 

• model-constrained optimal 
control for the yaw

• Inner Loop
• PI pitch controller

Wind Farm LES

Optimization Solver

Cost Function Graph Model

( )farmP t,Yaw γ

( )farmP t

Outer Loop:
Yaw optimal controller

TC ′

Inner Loop: 
Pitch PI controller

( ) ( )
ki

T p P i P
T

C k e t k e dτ τ′∆ = + ∫

TC ′
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Preliminary control test case
18-turbine LES wind farm 
plant

Performance metric
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RegA test signal

Zero-integral

Time [m]

RegD test signal

3 test signals (8% regulation) 
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LES,i Ref,i

1
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RMSE P P
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Tuning PI Gains
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Frequency regulation results (preliminary)
0Ref 0( ) (1 ) ( )dP Pt r t Pα= − +

0 18.75MWP =

5min
2min
10sec

T

H

C

T
T
T

γ

′

=
=

=

3 derate values (0, 2, 4)

[Starke et al. ACC 2023]
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Yaw augmented pitch control (preliminary conclusions)
• Overall use of yaw for power tracking is complicated by the 

timescales (yaw is slow)
• Yaw seems to have added benefit when derates are lower

– Noted benefit if the system is using greedy control (maximum thrust 
coefficient)

• Implementation of receding horizon approach in yaw loop may 
improve these results 
– New approaches needed
– Computational trade-off needs to be examined

2024 Sandia Blade Workshop
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