

Challenges in wind tunnel measurements and CFD simulations of LER effects at high Reynolds numbers

<u>A Meyer Forsting</u>, AS Olsen, S Ildvedsen, NN Sørensen, C Bak, J Beckerlee, A Fischer

Senior Researcher, Aerofoil & Rotor Design DTU Wind & Energy Systems

Blade roughness & Reynolds number

BL thickness ratio

Relative roughness height

Blade roughness & Reynolds number

- Relative roughness height increases with Re => increasing roughness sensitivity
- 4 x Re => 2 x relative height

Such 22 Mary

BL thickness ratio

Relative roughness height

$$\frac{k}{\delta_2} = \frac{k}{\delta_1} \sqrt{\frac{\text{Re}_2}{\text{Re}_1}}$$

EllipSys2D RANS-CFD

- Incompressible
- k-ω SST
- Structured O-mesh
- 512 chordwise x 256 normal
- Fully automatized workflow: PyE2Dpolar

Nenni-Gluyas (1966), Schrauf (2022)

$$\operatorname{Re}_{k} = \frac{U_{e}k}{v}$$

Nenni-Gluyas (1966), Schrauf (2022)

 $\operatorname{Re}_{k} = \frac{U_{e}k}{k}$

Conventional roughness modelling in ...

Wind tunnels

Zig-zag tape

Sand paper

CFD

Trip functions

• Explicit triggering of turbulent production

u

• Modifications to transition criteria

Rough wall models

- Set non-zero turbulent eddy viscosity at wall
- Relies on equivalent sand grain roughness

Wind tunnels

DTU

=

Zig-zag tape Needs to shrink with Reynolds number Sand paper (Needs to shrink with **Reynolds number**) Sand paper is not standardized Backward facing step

CFD

... and its challenges

+ /

U.

Trip functions

- Explicit triggering of turbulent processing
- Modifications to transition criteria

Rough wall models

- Set non-zero turbulent eddy viscosity at wall
- Relies on equivalent sand grain roughness

• Transition location known a priori

High uncertainty in our equivalent sand grain estimate

Do we need to resolve LER in more detail? (especially considering 1 Re)

PowerCurve

EUDP

Project duration: March 2022 to June 2025 **Funding**: EUDP (Energy Technology Development & Demonstration)

Danish Ministry of Climate, Energy and Utilities

Digital LER

Wind tunnel

Design criteria

- Reynolds number 3 7 million
- Open profile coordinates (shareable)
- Enable testing multiple LER samples

the same

- Enable IR imaging (transition)
- Enable acoustic measurements

LERCat wind tunnel model

Final design

- FFA-W3-211
- Chord: 0.9 m (Re=3 6 million)
- Span: 2 m
- Exchangeable LE
 - 3D printed LER (7 x 285mm span, MJF) mounted on AL base
 - Joints at x/c=0.1 (XLE-AL base) + x/c=0.15 (AL base-main body)
- Heated main body

Before and after sanding with P1200

Clean validation - Aluminium LE

XLE LER-2

XLE LER-1

XLE LER-0

Sand paper x/c=3% SS, 4%PS

Sand paper x/c=3% SS, 4%PS

Sand paper x/c=3% SS, 4%PS

Surface treated XLE

Before polishing

- Ra: 10um, Rt: 77um
- Similar but higher than P400

After polishing

- Ra: 1um, Rt: 10um
- Lower than SLA

Wake rake measurements Re=4.5e6 AoA=5 deg

Wake rake measurements Re=4.5e6 AoA=5 deg

Wake rake measurements Re=4.5e6 AoA=5 deg

Summary & Outlook

- Roughness effects grow with Reynolds number
- Difficult to model real-world LER in wind tunnels and CFD
- Both wind tunnels experiments and simulations cannot easily be extended to high Res

CFD: Transition models tuned for Res up to 3 million

WT: Surface imperfections other than the roughness to be tested become critical

 Sensitivities will be further explored and disseminated, also through IEA task 46

Contacts

alrf@dtu.dk

Christian Bak chba@dtu.dk Danish Ministry of Climate, Energy and Utilities

