

Q U A N T A T E C H N O L O G Y

Battery Storage for Generation and Transmission Deferral

Presented at: ICC /DOE/SNL Webinar

Dr. Hisham Othman January 2022

Introductions

• Dr. Hisham Othman

- VICE PRESIDENT, TRANSMISSION & REGULATORY
- Areas of expertise include power system dynamics and control, hybrid microgrids, grid integration of renewables and storage, economic analysis
- PhD, Electrical Engineering, University of Illinois, Urbana
- Over 30 years of technical and managerial experience in the electric power industry

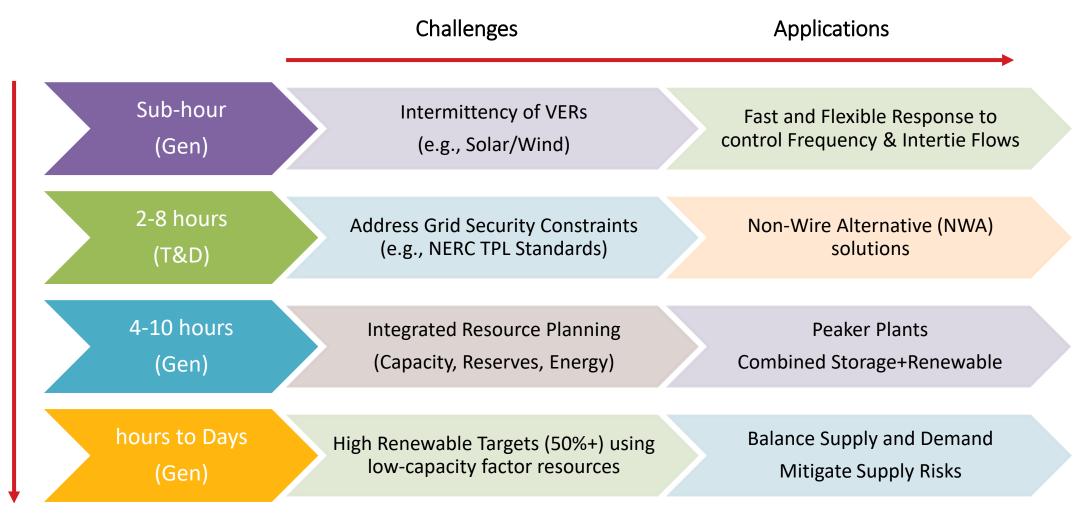
Carbon Reduction Plans (NetZero)

	Dominion	Duke	Southern Co	Xcel	SDGE	WEC	EverSource	PSEG	ConEd	DTE	Entergy	Ameren	SCE	PG&E	CMS	Avangrid	FirstEnergy	AES Corp	Vistra Corp	Pinnacle West	NRG	NationalGrid	Nextera	AEP	Exelon	PPL	Alliant Energy	Atmos Energy	Evergy, Inc.	Center Point	NiSource	PREPA
2025						55										35		50			50		67		15							40
2030		50		80		70	100			50	50	50	40	40			30	70	60	65		20		70			50				90	
2035																100												30		70		
2040									100	80	85	85			100											70						60
2045					100			80					100	100																		
2050	100	100	100	100		100		100		100		100					100	100	100	100	100	100		80		80	100		80			100

- NetZero decarbonization goals set at most major utilities and corporations over next 10-30 years
- This is prompting a profound change in the energy resource mix towards inverter-based resources (IBRs) in the form of solar, wind, and energy storage, in addition to clean dispatchable sources (e.g., hydrogen).

Challenge for Incorporating Energy Storage

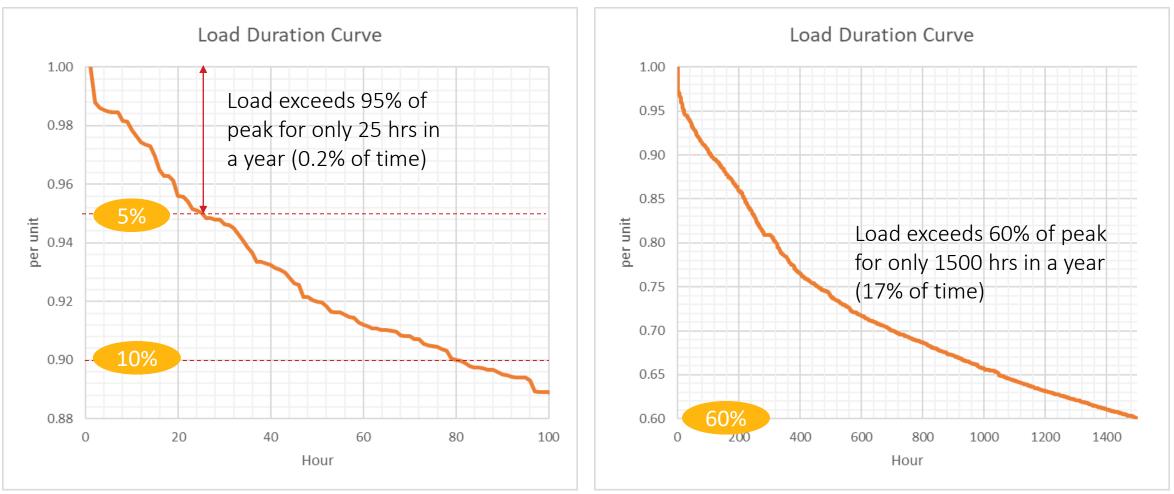
- A robust response from utilities and corporations to climate change culminated in NetZero carbon reduction goals to reach 100% between 2030 and 2050.
- Integrated resource planning (IRP) processes and tools have served the industry well over the past 30 years. However, they are increasingly challenged:
 - Increased uncertainties in load development, electrification, technology, and grid development.
 - Reliability concerns of high penetration of inverter-based resources (IBRs) not modeled.
 - Dependance of resource development on availability of T&D hosting capacities, not co-optimized.
 - Resilience requirements associated with intermittent resources and grid vulnerabilities not modeled.
 - Energy storage capacity (i.e., hours) are pre-selected and not optimized.
 - Energy storage value is often restricted to energy balancing, while the full stack of benefits not exploited.


Role of Energy Storage within an IRP

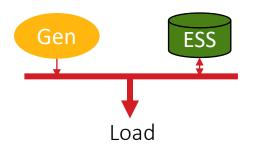
- Gen Resource:
 - Capacity and Reserves
 - Daily energy balance
 - Firm and shape solar and wind profiles
 - Fast ramping
 - Fast Frequency Response (FFR) and Primary Frequency Response (PFR)
 - Multi-day resilience
- T&D Grid Resource
 - Non-Wire T&D Solution (NWS)

- Model Reliability and Resilience Attributes/Metrics of Resources:
 - Dispatchability
 - Predictability
 - Dependability (e.g., Supply Resilience, firmness)
 - Performance Duration Limits
 - Flexibility (e.g., ramping speed, operating range)
 - Intermittency (e.g., intra-hr and multi-hr ramping)
 - Regulating Power
 - VAR support
 - Energy Profile (e.g., capacity credit / ELCC)
 - Inertial Response
 - Primary Frequency Response
 - Minimum Short Circuit Ratio
 - Locational Characteristics (e.g., deliverability, resilience to grid outages)
 - Black start and system restoration support

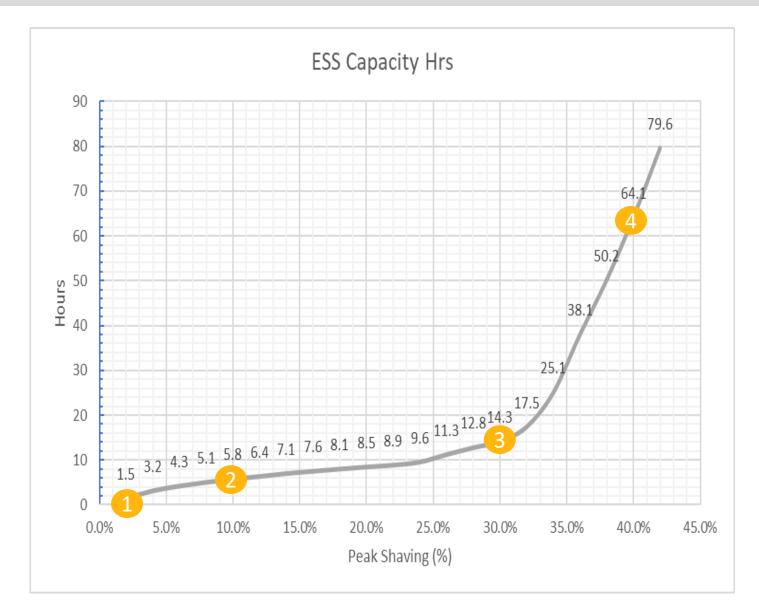
Role of Energy Storage within an IRP



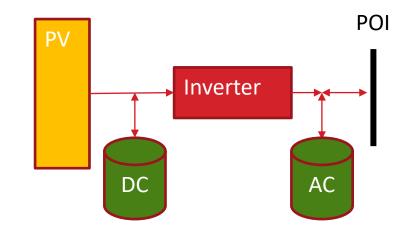
VER: Variable Energy Resources NWA: Non-Wire Alternative Solutions RE: Renewables


Slide 6

- Load shape is a key driver for Peaker plants.
- Top 5% of peak load lasts for only 25 hours in a year, while Top 10% of peak load lasts for 80 hours.

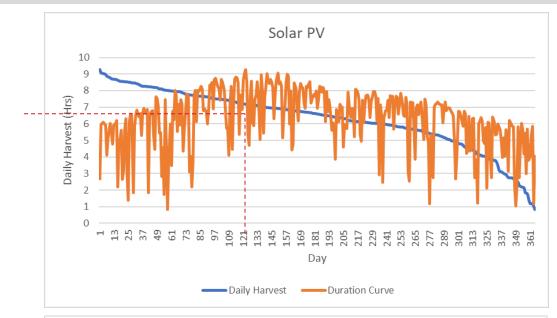


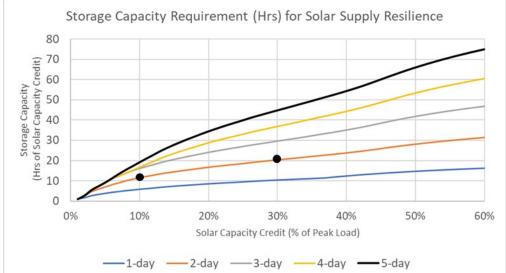
Example 1: Storage as a Peaker (duration increases with storage MW size)


- For a full capacity credit, Peaker's minimum energy capacity is:
 - 1.5hrs when the storage MW size does not exceed 2% of peak load;
 - 6hrs when storage MW size increases to 10% of peak load;
 - 14hrs when the storage MW increases to 30% of peak load; and
 - grows exponentially beyond 30%.
- Ability to recharge the battery on peak load days drives the need to for longer storage duration.

Example 2: Solar + Storage (optimized according to market and grid)

- Optimizing the storage size depends on:
 - Interconnection capacity at POI and upgrade cost.
 - Revenue streams: Energy, Capacity, Ancillary, RECs.
 - Technology Cost: PV, Inverter, ESS (DC or AC connected).
 - Location Solar Irradiance
 - Investment Tax Credit (ITC)
- Example (Arizona) POI Capacity 1000 MW:

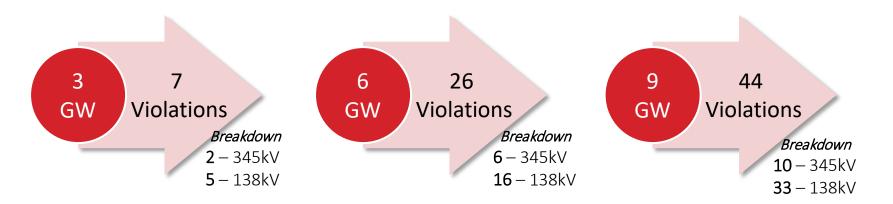

		Solar PV (MWdc)	ESS-DC connected MW / Hrs	ESS-AC connected MW / Hrs	Net Present Value \$M	Plant Capacity Factor%
ξ 🕇	PV alone	1,370	-	-	\$366M	34%
	PV + ESS-DC	1,511	1,000 / 3.4	-	\$488M	37%
5	PV + ESS-AC	1,316	-	1,000 / 1.2	\$466M	35%
)	PV + ESS-DC + ESS-AC	1,363	676 / 3.8	640 / 1.0	\$530M	34%
	PV + ESS-DC + ESS-AC	2,000	800 / 4.6	377 / 1.0	\$483M	46%
	PV + ESS-DC + ESS-AC	2,500	883 / 5.8	119 / 1.0	\$427M	56%



Optimized

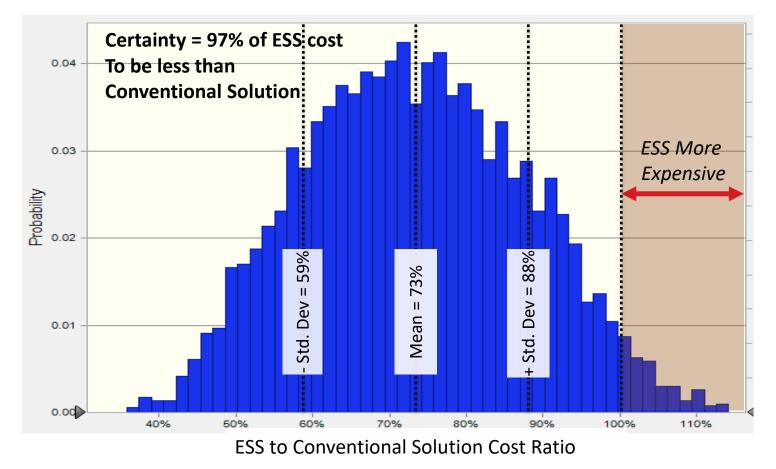
Example 3: Supply Resilience (Requires Long-Duration Storage)

- Solar Daily Energy Harvest:
 - Range 1-9 hrs
 - Median 6.5 hrs
- How much Storage? depends ...
 - Installed VER penetration level
 - Load Profile
 - Number of rainy days & Season
- Storage size increases with solar penetration level and number of consecutive rainy days:
 - Peak load of 1000MW,
 - 500MW solar PV with a capacity value of 100MW (10% of peak load)
 - 2 consecutive rainy days
 - Storage size is 1200MWh (or 12 hours of 100MW capacity) or carry a 100MW generator running on renewable fuel.



Example 4: Transmission NWA - OSW Integration in NY (indicative)

	Sites	Max Dispatch
	Greenwood	600
	Astoria W	600
	Jamaica	362
	Mott Haven	0
l ə l	Gowanus	600
Zone J	Hudson River E.	600
	Farragut	0
	Astoria Annex	544
	Rainey	562
	West 49th St	0
	Riverhead	600
	Holbrook	267
еK	Shoreham	500
Zone K	Sterling	134
	Barrett	209
	Ruland Rd	0


- This case study is indicative and not actual.
- Grid reliability violations (NERC TPL).
- Conventional Upgrades will cost over \$1B to integrate 6GW of OSW.
- Non-Wire storage solution require 2 battery systems totaling 126MVA (8.5 hrs), with an initial cost estimate of \$310M.
- Apple-to-Apple lifetime techno-economic analysis shows the NWS cost to be 65% of the conventional solution

Energy Storage as transmission asset should be considered for efficacy and cost effectiveness to address grid reliability

Example 5: NWA Real Option Analysis – Optimizing Transmission Planning Under Uncertainty

- Load Forecast Uncertainty
- LMP and Ancillary Price Uncertainty

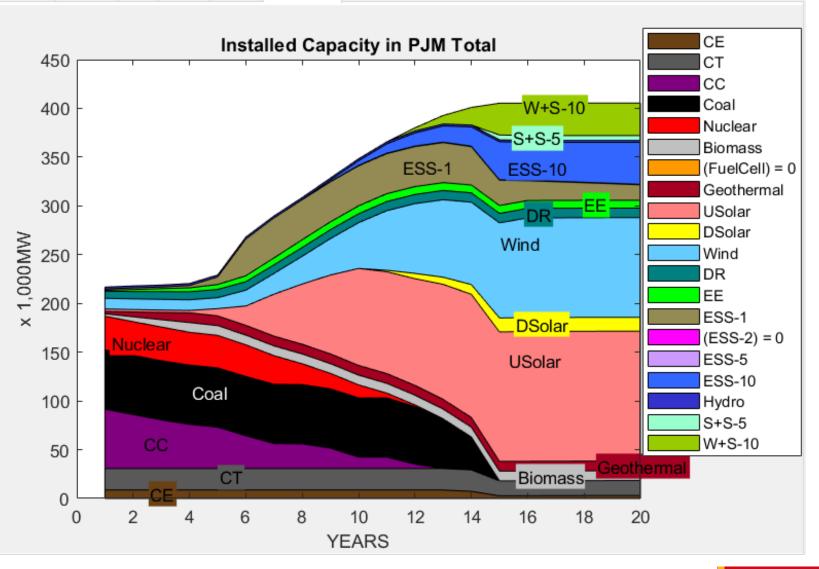
Case Study in CAISO

- Conventional Solution \$60M
- ESS w/o Markets \$70M
- ESS w/ Markets \$50M

Option Valuation

 ESS cost ranges from 30% to 120%, with a mean value of 70% of conventional solution value

Real Option Analysis


- Rank Projects Internally
- Optimize Asset Decisions
- Balance Customer Risk and Cost

Phased planning in uncertain environments can reduce customer cost & risk

- Storage energy capacity increases with time:
 - Freq Response:
 - ESS-1hr
 - Capacity & Energy Balance:
 - ESS-5hr
 - ESS-10hr
 - Capacity & Energy:
 - S+S-5hr
 - W+S-10hr

Example 6: Energy Storage Requirements at Year 20 (Probabilistic IRP)

70 65 Storage Size (GW) 05 52 09 95% Mean Confidence 90% 45 Confidence 40 10 20 30 40 50 60 70 80 90 100 0 **Cummulative Probability**

Probability of Max. Storage Size Requirement

- Storage Requirements range between 41-69GW, with a mean of 60GW.
- 90% probability the storage requirements will exceed 50GW; 95% probability will not exceed 62GW.

Summary

- Energy storage is a versatile tool to help decarbonize the economy.
- Modeling of storage within IRPs needs improvements.
- Many applications require long duration storage.
- Probabilistic analysis and real option valuations provide confidence for investments in uncertain environments.

Thank you!

Q U A N T A T E C H N O L O G Y

Dr. Hisham Othman <u>HOthman@Quanta-Technology.com</u>