ENERGY STORAGE PROJECT DEVELOPMENT

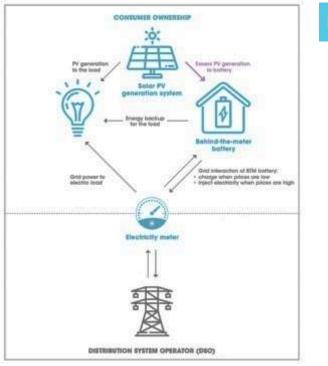
Illinois Commerce Commission Energy Storage Webinar Series December 7, 2021

PRESENTED BY Dan Borneo/Susan Schoenung

SAND2021-14835 PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of

Energy's National Nuclear Security Administration under contract DE-NA0003525


TODAY'S TALK —

This talk focuses on project development process and commissioning

Introduction

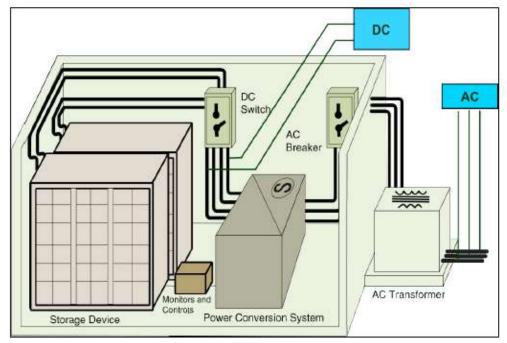
- Technology
 - System Components
 - Technologies
- Developing and installing a system Process
 - Process Flow
 - Applications
 - Ownership and contracting decisions
 - Commissioning
- Lessons Learned
- Safety

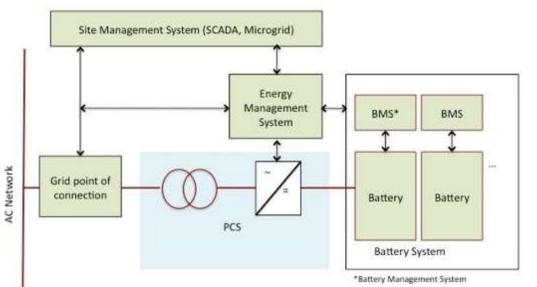

DEMONSTRATION PROJECTS – WHAT WE DO AND WHY

- Provide project implementation support from initiation thru operation.
 - Engineering analysis
 - Design, procurement, construction consulting
 - RFP development, vet technologies, review construction documentation
 - Safety design
 - Commissioning and operation support
 - monitoring
 - Installation best practices
 - Training

- Public outreach through papers, Webinars, Presentations
- WHY IS THE PROGRAM IMPORTANT?
 - To Help develop more safe, effective, and reliable systems
 - Demonstrate benefits
 - Inform codes and standards & best practices for installation and operation
 - Operational data gathering and analysis
 - Learn...Learn...Learn!!

DOE/SNL ENERGY STORAGE PROJECTS

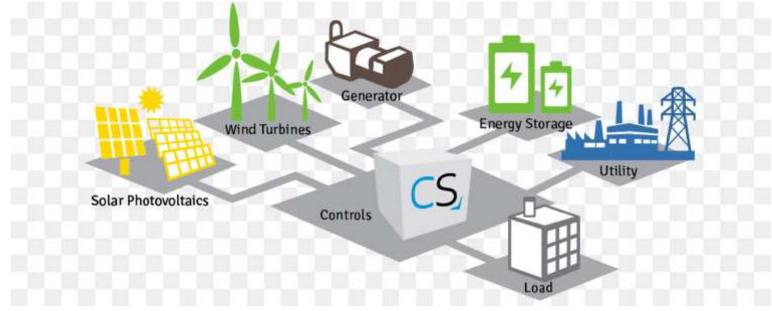



SYSTEM ELEMENTS = DESIGN DECISIONS

Battery Storage	Battery Management System (BMS)	Power Control System (PCS)	Energy management System (EMS)	Site Management System (SMS)	Balance of Plant
 modules Racks \$/KWh 	 Battery Management & BESS Protection \$ included in storage cost 	 Bi-directional Inverter Inverter control Interconnection / Switchgear \$/KW 	 Charge / Discharge Load Management Ramp rate control Grid Stability Monitoring \$ / ESS system 	 Distributed Energy Resources (DER) control Synchronization Islanding and microgrid control \$ / microgrid 	 Transformer/POC switchgear BESS container Climate control <u>Fire protection</u> Construction and Permitting \$ / project

NOTE: Important to have single entity responsible for the ESS integration.

ENERGY STORAGE SYSTEM OVERVIEW (ES IS ONE PART OF WHOLE)


THE MICROGRID

7

Integrated into grid systems

- Designed for Applications
- Sized for Applications
- Focus on Battery, Renewable AND Traditional Generation

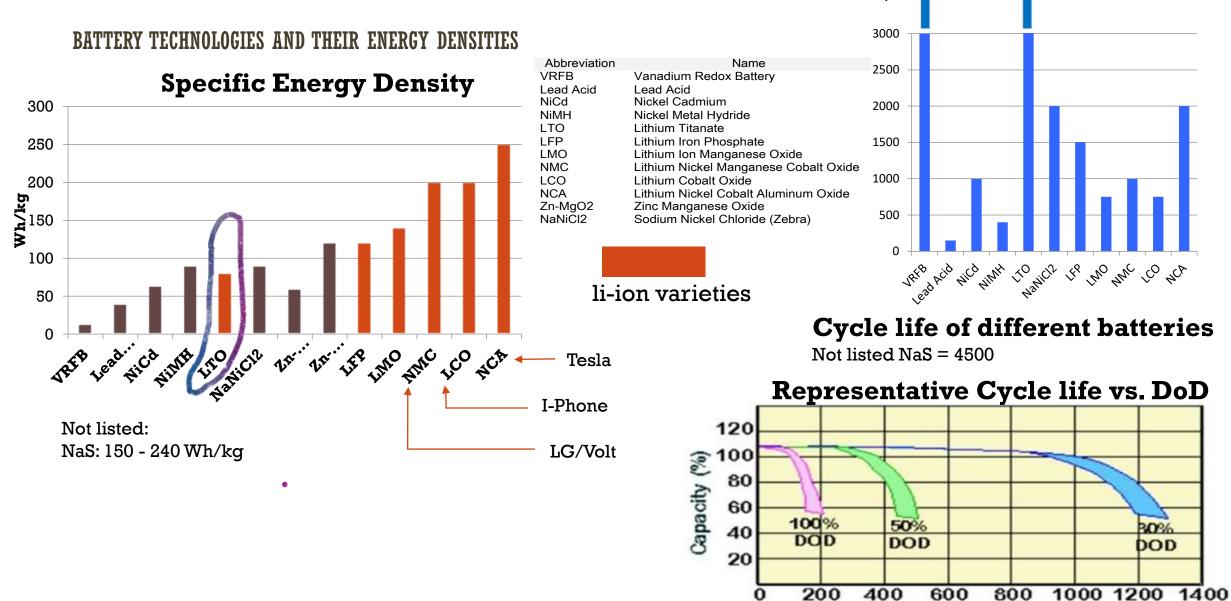
Cost Considerations Suggest Traditional Components

TECHNOLOGIES

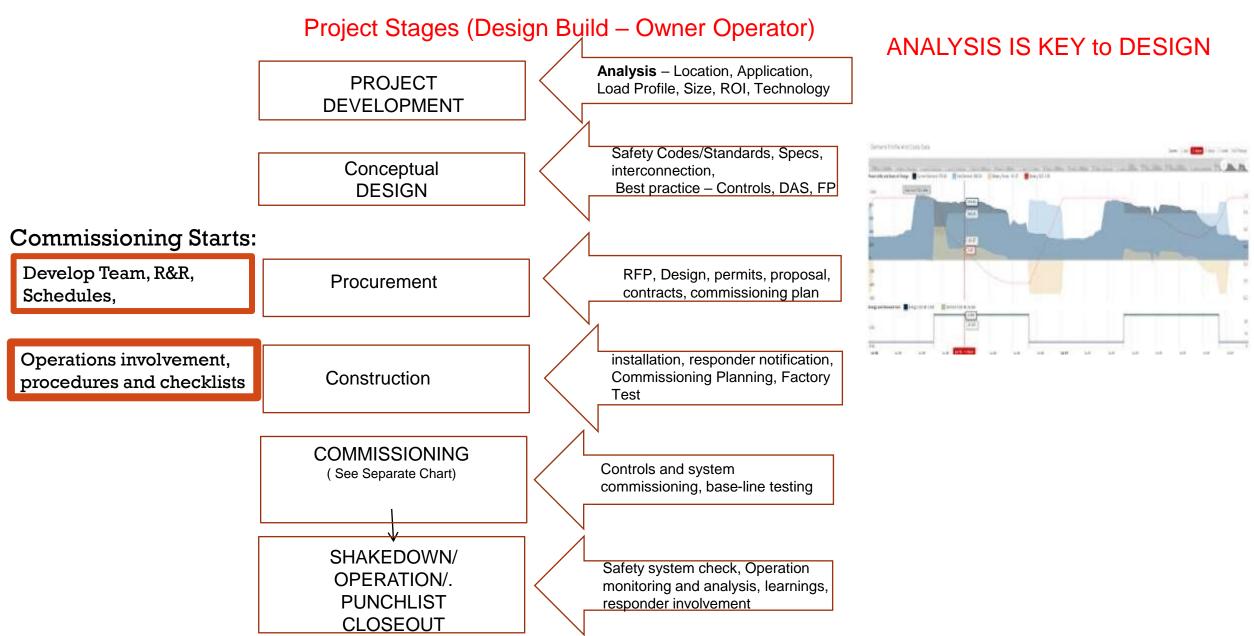
8

Technology	Typical Size Available	Suitable for onsite?
Ultra-Capacitors	17.5 kW, 140 Wh max	Power quality applications – Short durations
Flywheel (energy)	36 kW, 120 kWh	Peak shaving
Flywheel (power)	160 kW, 15 min	Power quality, frequency control
Ice Energy	No longer in business	Cooling, load management
Lead Acid Battery	1-10 MW, up to 8 hrs	Peak shaving, back-up
Li-ion Battery	100 kW – 1 MW+, 1-8+ hrs	Short to mid-duration Peak shaving, back-up
Sodium Sulfur Battery	10 MW, 6 hrs (min)	Grid scale peak shaving, load control
Zinc manganese battery	13 kWh pilot at SNL	Good potential for onsite power
Vanadium Redox	100 kW – 1 MW, 2-12 hrs	Commercial scale in development
Fuel cells	100 kW – 2 MW	With hydrocarbon or hydrogen fueling

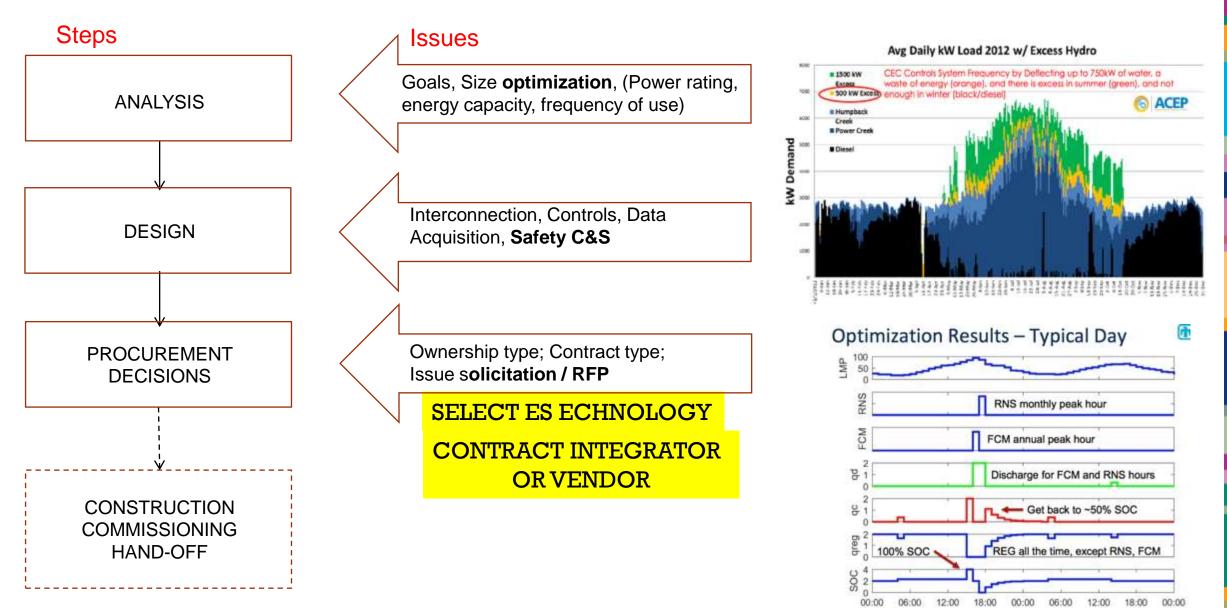
Ultracapacitor module



9



Curtesy of: Battery University

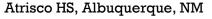

Cycle Number

10,000

ENERGY STORAGE PROJECT PROCESS



PROJECT DEVELOPMENT – PRE-CONSTRUCTION



ENERGY STORAGE APPLICATIONS

- Peak shaving to reduce time-of-day rates or demand charges; can take advantage of on-site renewables (PV)
- Reliability, resilience or back-up power
- Power Quality
- EV charging for fleets or employees
- Combined-heat-and power in some climates
- Not UPS

PROCUREMENT – SYSTEM OWNERSHIP DECISIONS

System Ownership	Pros	Cons
Owner/Operator Owner contracts to build system, & will own and operate.	Control of system installation & ability to adjust operations as markets warrant.	Owner assumes risk Warranty or O&M agreements to solve operational issues. PM requirements
Lease (w/Option to buy) Customer leases ESS from owner for specified time (PPA), & will operate system within parameters of lease.	Control of system within lease parameters - Some ability to adjust operations. Maintenance burden usually borne by ESS owner. Tax appetite considerations.	Lack of ownership. Storage customer bears some operational risk, and is responsible for maximizing benefits.
Power Purchase Agreement Project developer/operator builds and operates ESS, & Customer pays for kWh and/or services delivered.	Performance risk and maintenance burden is borne by ESS owner/operator. Customer only pays for energy and/or services.	Lack of ownership. Customer may be locked into operating load profiles and/or applications.

Contracting Strategy	Description	Comments
Design / Bid / Build (DBB) or Engineer/Procure/Construct (EPC)	 Contract with a design firm or developer, design is put out to bid for procurement and installation. 	Allows the owner more control, between design and construction.
Design / Build (D/B)	ES system provider or developer designs and builds the ESS project - turnkey system.	Convenient when limited engineering and/or construction management resources.
Hybrid	Owner separates the infrastructure (design and installation) from the ESS design and installation	Owner coordinates the interface between infrastructure and ESS, i.e., conduits, cabling, electrical distribution. • Integration may be a hassle

COMMISSIONING - DETAILS

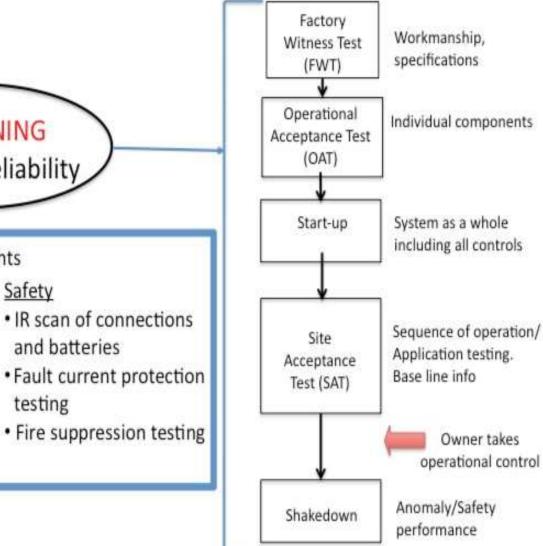
Safety

testing

and batteries

Base line measurements

COMMISSIONING


Safety and Reliability

Operations

Voltage

15

- Capacity
- Ramp rate
- Charge time
- Discharge time

Poudre Valley 140 kW-3 hr

KEY TAKE-AWAYS - CONTRACT COMPONENTS

Scope

- Owner/Operator Responsibilities
- Contractor/Integrator Responsibilities
- Codes and Standards
 - NFPA 855
 - UL 9540/9540A
- Safety Program and training
- Lead-Time
- Testing/Commissioning
- Performance Guarantee
- Load Profile
- Maintenance/Warranty

LESSONS LEARNED - COMMISSIONING

Things to Know, Do and Watch Out For:

- >Location/Location/Location
- >Integration isn't automatic
- >Base-line testing
 - ≻IR scan

17

- ≻Capacity
- >Data acquisition
 - Points of interest
 - Capacity fade
 - Operational parameters
- >Involve AHJ and First Responders early on.
- Safety system check out
 - Does system behave when bad things happen?
 - Training for operators and first responders

MORE LESSONS LEARNED

- > Warranties and maintenance need to be factored into ROI
- Detail all possible operations for microgrid (e.g., storage + PV) during design to avoid retrofit.
- RFP details are important
 - Problem Statement
 - Scope

18

- Load Profile
- End of Life Requirements
- Applications
- Labeling and Signage
- Code adherence
- Contracting Strategies

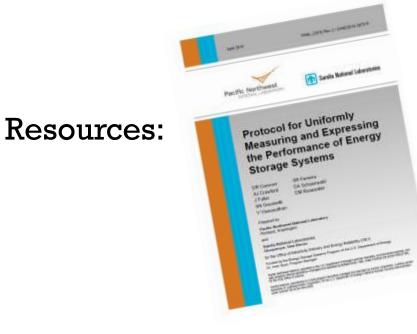
Typical module in a Rack

EPC inverter at NELHA

HIGHLIGHTING SAFETY — OTHERS WILL PROVIDE DETAILS

- Codes and Standards
- Safety systems _what works what's the latest in design
 - Smoke exhaust
 - louvers for v; ula prouring fire
 - Early men concection
- Control ication and Training of first responders, certaion/maintenance
- Fire protection
 - Dry-pipe water
 - Clean Agent (i.e., Novec 1230)
- ≻Signage

20 SUMMARY


Murphy's Law:

 $= ((U+C+I) \times (10-S))/20 \times A \times 1/(1-\sin(F/10))$

Where:

U=urgency, **C=complexity**, I=importance, **S=skill**, A=aggravation and F=frequency

Newatlas.com

SANDIA REPORT Energy Storage Procurement Guidance Documents for Municipality Sanda Material I

ABB Inverter line-up at Cordova

This work is funded by the DOE OE Stationary Energy Storage program, directed by Dr. Imre Gyuk.

Daniel Borneo drborne@sandia.gov

Supporting Cast: Susan Schoenung Susan.schoenung@longitude122west.com

EXAMPLE - SYSTEM DESIGN APPROACH

22

Application: Provides support for additional PV