ADVANCED REACTOR SAFEGUARDS & SECURITY

Integrity Enhancing Protocols

Advanced Reactor Safety and Security (ARSS) Spring Program Review SAND2024-06096PE

PRESENTED BY

Romuald Valme, Christopher Lamb

May 15, 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Motivation and Background

- As technology advances security implementations are becoming inadequate
- OT environments are lacking in integrity verifying procedures
- Specific resource constraints in OT: storage, memory, CPU
- Prioritizing lower costs, and resource utilization
- Currently spending to our expense plan

May 22

Intend to be spent out by the end of the fiscal year

- Verifying that your received data has not been tampered with or altered from its specified source
- Guarantees data has not been altered by a hostile actor or system error
- Can provide authentication that you are communicating with the intended source
- Can provide non-repudiation in the case of public-key architecture

Need – Understanding of OT Integrity Protocols

- OT Systems have specific performance, security, and configurational requirements
- What protocols excel at meeting OT integrity requirements?

OT and Integrity Use Cases

- Control commands to actuators
- Sensor data to a PLC

- Information from and to the historian
- Data and identity verification
- Performant integrity verification is important in such cases

- Research began in FY24 on various Integrity Protocols
- Six categories considered for evaluation
 - Multi-signature, Lightweight, Quantum, Machine Learning, Verifiable Computing, Blockchain
 - We analyze these protocols through an evaluative framework designed to quantify and qualify OT system needs
- Current FY24 Status

May 22

- Running scenarios and assessments in our testbed
- Collecting attribute measures and metrics

Literature Review – Promising Protocols

Category	Protocol	
Multi signature	Modified El Gamal, Sequential Signing, Parallel Signing	
Quantum	SPHINCS+, PQCRainbow, Falcon	
Lightweight	ECDSA, SEMECS	
Neural Cryptography	Autoencoders, I-EBP	

Lightweight Cryptography

- Elliptic Curve Digital Signature Alg.
 - Various curve fields available
 - Smaller keys
 - faster encryption
- Signer Efficient Multiple-time Elliptic
- Curve Signature (SEMECS)
 - 32 byte private key
 - Modular vs. scalar multiplication
 - 118x Lower energy consumption
 - FourQ curve

Multi Signature

- Sequential Signing
 - One output signature
 - Complex signing order
- Parallel Signing
 - The same input message is signed for all
 - Multiple output signatures
- Modified El Gamal
 - The pros of both
 - Combines keys of signatories

Digital Signature

Documen

Hash Function

Hash Code

Signatory 1

Encryption Process

Post-Quantum Cryptography

- NUANCED REACTOR POSAFEGUAROSOR SECURITZ
- Term denoting a wide range of protocols intended to resolve Quantum threats to traditional cryptographic schemes
- Lattice-Based Cryptography (Falcon, Dilithium, NTRU)
 - Based on hardness of high-dimensional lattice problems
- Multivariate Cryptography (LUOV, PICNIC, MQDSS)
 - Based on hardness of multivariate polynomial equations
- Limited evaluation of novel post-quantum protocols on OT hardware

Neural Cryptography

- Hebbian Rule
 - Updating weights in network based on paired output
 - Used to generate private and public key
- Models used for encryption function
 - Convolutional layers
 - Autoencoders
- Feature rich data

- Biometrics
- Improved key management and storage as weights
- Train network to recognize identity

Framework Metrics and Groups

Attribute Group	Attribute	Metric	Notes
Protocol Running time	Key Generation Running Time	Microseconds (µs)	Measured in function call
	Key Generation Asymptotic Worst Case	Big O Notation (O(n))	Derived theoretically
	Key Encapsulation Running Time	Microseconds (µs)	Measured in function call
	Key Decapsulation Running Time	Microseconds (µs)	Measured in function call
Endpoint Storage	Key Storage Requirements	Bytes	Single key storage
Requirements	Cryptosystem Storage Requirements	Bytes	Algorithm component storage requirements
Protocol Hardware	Cryptosystem Average CPU Utilization	Percentage	Average usage over a single transaction
Performance	Cryptosystem Average Memory Usage	Bytes	Average usage over a single transaction
	Network Transmission Time	Milliseconds (ms)	Measured in function call
Existing Security Evaluation Level	NIST Security Classification of Modules (FIPS 140-2 [16])	Integer Scale (1-4)	Physical module security
	NIST PQC Security Project Levels [17]	Integer Scale (1-5)	Protocol security in relation to classical protocols

Scenarios and Testing

- Based on our PROMISE Capstone
 Environment
- PLC 1
 - Communicates sensitive sensor and actuator data across the network
- PLC 2
 - Communicates sensitive sensor and actuator data across the network
- Router

May 22, 2024

- Facilitate data flow throughout network
- Network Data Collection
 - Capture packets, testing data security and integrity

_____o

Environments and Tools

- Minimega/PHENIX
 - A virtual machine and network emulator environment
- Wireshark/tcpdump
 - Observing network traffic
- Python

May 22

- Cryptographic libraries and profiling tools
- Standard Linux commands
 - ps, top, etc. for machine metrics

