Pebble Database for PBR MC&A – NEUP

Advanced Reactor Safeguards & Security Spring Working Group Meeting, May 14 – May 16, 2024 Braden Goddard, Ben Impson, Kashminder Mehta, Holden Walker, Zeyun Wu

College of Engineering Mechanical and Nuclear Engineering

Braden Goddard, Ph.D. Assistant Professor bgoddard@vcu.edu

Project Team

Core VCU team

- Braden Goddard (PI)
- Zeyun Wu (co-PI)
- Kashminder Mehta (Ph.D. student)
- Ben Impson (undergrad)
- Holden Walker (undergrad)
- Project duration: Oct. 2022 Sept. 2024
 - Requesting 3 month no cost extension
- Funding amount: \$400k

External advisory team

- Claudio Gariazzo (ANL)
- Yonggang Cui (BNL)
- Philip Gibbs (ORNL)
- Donny Hartanto (ORNL)

The Challenge

- Knowing the nuclear and radiological material content in used pebbles is important for:
 - Safeguards
 - Facility operations
 - Waste management
 - -Etc.
- Used pebbles are measured relatively quickly after discharge and there path through the reactor can vary between pebbles
 - Traditional LWR gamma and neutron NDA correlations may not be applicable

Project Goal

- Create a data library of used pebble NDA signatures
 - Gamma spectra (HPGe)
 - Neutron counts
- Validate data library using an independent code
 - -MCNP, OpenMC, Serpent
 - INDEPTH (ORIGEN)
- Document methodology used to create the data library – Focus is Xe-100

Introduction of PBR

- PBR is an emerging as a next generation (Gen-IV) reactor
- Thousands of pebbles used as fuel
- Each pebble is spherical and filled with thousands of TRISO particles
- Helium is used as the coolant
- Pebbles circulates continuously through the reactor core throughout operational lifespan

Single Pebble Model

Single Pebble Model – Code Verification

• Code to Code verification of k_{∞} in a single pebble with different Monte Carlo code: OpenMC and MCNP (and Serpent)

Random TRISO distribution

Pebble material composition

Material	Density (g/cm³)	Composition (atomic fraction)	Dimension (µm)
UCO Fuel	10.9	 ²³⁵U: 0.05232 ²³⁸U: 0.28101 ¹⁶O: 0.49982 ¹⁷O: 0.00019 C: 0.16667 	425 (diameter)
Carbon Buffer	1.0	C: 1.0	100 (thickness)
PyC1	1.9	C: 1.0	40 (thickness)
PyC2	1.9	C: 1.0	40 (thickness)
SiC	3.2	C: 0.5 Si: 0.5	35 (thickness)
Graphite	1.75	C: 1.0	6 cm diameter with a 0.5 cm thickness non- fuel shell

Results at Hot Operation Condition

• k_{∞} of a single pebble with TRISO particles uniformly and randomly distributed at 1200 K temperature

Pebble Model		k_{∞} (White B.C.)	k_{∞} (Mirror B.C.)
Uniform	MCNP	1.50821 +/- 0.00007	1.51774 +/- 0.00007
	OpenMC	1.50789 +/- 0.00012	1.51757 +/- 0.00012
	deviation	0.00031	0.00017
	MCNP	1.51203 +/- 0.00008	1.52111 +/- 0.00006
Random	OpenMC	1.51071 +/- 0.00012	1.51980 +/- 0.00012
	deviation	-0.00132	0.00131

Results at Cold Operation Condition

• k_{∞} of a single pebble with TRISO particles uniformly and randomly distributed at room temperature

Pebble Model		k_{∞} (White B.C.)	k_{∞} (Mirror B.C.)
Uniform	MCNP	1.60743 +/-0.00008	1.61471+/-0.00004
	OpenMC	1.60818 +/- 0.00011	1.61560 +/- 0.00012
	deviation	-0.00067	-0.00089
	MCNP	1.61017 +/-0.00007	1.61723 +/-0.00006
Random	OpenMC	1.61025 +/-0.00011	1.61739 +/- 0.00012
	deviation	0.00008	0.00016

Full Core Model

Approach

- Integrate the open-source CFD-DEM and OpenMC codes for the full reactor model
- To analyze the neutronic behavior, including spatial and temporal pebble depletion, as well as conduct thermal and fluid flow analysis within the reactor core

Computational Models (CFD-DEM)

Computational Models (OpenMC)

 OpenMC – Monte Carlo based 3D neutron transport code, analyzing neutronic behavior in reactors

$$\begin{split} \Sigma_t(\vec{r}, E)\psi(\vec{r}, E, \vec{\Omega}) + \vec{\Omega} \cdot \nabla \psi(\vec{r}, E, \vec{\Omega}) - \int_0^\infty dE' \int_{4\pi} d\Omega' \Sigma_s(\vec{r}, E' \to E, \vec{\Omega}' \to \vec{\Omega})\psi(\vec{r}, E', \vec{\Omega}') \\ = \frac{1}{k_{\text{eff}}} \frac{\chi(E)}{4\pi} \int_0^\infty dE' \nu(E') \Sigma_f(\vec{r}, E') \phi(\vec{r}, E') \end{split}$$

OpenMC utilizes the Bateman equation for pebble fuel depletion

$$\frac{dN_{i}(t)}{dt} = \lambda_{i-1}N_{i-1}(t) - \lambda_{i}N_{i}(t)$$

Coupling CFD-DEM and OpenMC

PBR Model – OpenMC (Static Core)

OpenMC PBR – Modeling Control Rods

	Radius	Layers	Material	Inner Radius	Outer radius	
RCS	6.5cm	Layer 1	Incoloy800	4.15 cm	4.2 cm	0.5 mm
/RSS		Layer 2	B4C	4.2 cm	5 cm	8 mm
/		Layer 3	Incoloy800	5	5.25	2.5 mm

Туре	Total number	Inserted length (in present case)	Total insertion length
RCS	9	330 cm	660 cm
RSS	9	124 cm	860 cm

OpenMC PBR – Region Circulation

- The reactor core is divided into four axial and two radial regions
- Currently, there is no radial mixing of pebbles

INDEPTH Analyses

INDEPTH

e Help									🔎 indepth-gui: versio	on 1.5.0-dev							- 🗆
	Isotope inventory inpu	ıt			Isotope inventory inp	ut			File Help								
	Isotope ID	Ratio isotope ID	Mass ratio	Uncertainty	Sample 1	Sample 2	Sample 3			Input data Advanced							
Sample import	1 u-235	u-235	1	-1	cm-244: 384.38	cs-134: 689.476	cs-134: 689.476			Fuel type and library							
E-					cs-134: 689.476	cs-137: 5790.26	cs-137: 5790.26		Sample import	Select State:		Select	reactor:				Include reactor classes:
Pun setun					cs-137: 5790.26	eu-152: 0.03434	eu-152: 0.03434		<u>s</u>	Thailand Turkey		137	State United States of	Facility Yankee NPS	Reactor type PWR	Reactor c	 Power reactors Research reactors
N					eu-152: 0.03434	eu-154: 87.3044	eu-154: 87.3044		Run setun	Ukraine United Arab Emirates		120	United States of	Zion-1	DW/R	Dower	
\triangleright					eu-154: 87.3044		kr-85: 830 (8.3)		N	United Kingdom		130	United States of	7: 2	DWD	Devee	
INDEPTH					kr-85: 830 (8.3)					United States of America Uzbekistan		139	United States of	Zion-2	PWK	Power	1
									Run INDEPTH	Venezuela (Bolivarian Republic of)		140	United States of	Xe-100	HTGR	Power	
										SCALE fuel model to use in calculation:		Unkno	own •	•			
Compare PTH outputs									Compare	Optimization parameters							
									INDEPTH outputs	Parameter	Optimize	? Initial va	lue Minimum va	Ilue Maximum v	alue	Moderate	or density 1.05
										1 Specific power (MWth/tHM)		72.9927	1	72.9927			
w individual										2 Initial enrichment (wt %)		15.5	0	0			
innanouçua									View individual	5 Irradiation time (days)		2192	10	3000			
										6 Cooling time (years)		8.21355	0.0273785	76.6598			
																Add this rea	actor
										Automatically update optimisation p	arameters on	reactor/fuel	model update				
										Reactor inputs							
											Reacto	or 1				Re	move selected reactors
										Reactor name	United Stat	tes of					Remove all reactors
										Fuel model	pbmr						
										Specific power (MWth/tHM)	1->350 (72	.9927)					
	Add row	Remove row	Imm	ort CSV						Initial enrichment (wt %)	1->19.99 (1	15.5)					
						-	and the second	Demons of second		Plutonium concentration (%)	N/A (not N	/IOX					
	Ra	tio	Add t	nis sample		Rei	move selected samples	Remove all samples		Plutonium-239 concentration (%)	N/A (not N	/IOX					

Isotope inventory input

Sample 1	Sample 2	Sample 3
cm-244: 384.38	cs-134: 689.476	cs-134: 689.476
cs-134: 689.476	cs-137: 5790.26	cs-137: 5790.26
cs-137: 5790.26	eu-152: 0.03434	eu-152: 0.03434
eu-152: 0.03434	eu-154: 87.3044	eu-154: 87.3044
eu-154: 87.3044		kr-85: 830 (8.3)
kr-85: 830 (8.3)		

Burnup Condition	Value
Irradiation time (Days)	1304
Cooling time (Days)	30
Enrichment (%)	15.5

(Max Enrichment set to 19.99%)

Result	Sample 1	Sample 2	Sample 3
Irradiation Time (Days)	1987	1366	1976
Cooling time (Days)	9.99	9.99	9.99
Enrichment (%)	15.85	18.47	17.50

- Input data from heterogeneous MCNP single pebble model
- INDEPTH model uses homogeneous SCALE single pebble model

Gamma Ray Signature

Gamma Ray Sampling

- MCNP6.2
- Gamma rays are generated in the fuel region of the pebble
 - Each gamma emitting nuclide in used fuel is modeled independently
- HPGe detector is used to measure the gammas
 - Energy range from 0 MeV to 8192 MeV
 with 16384 bins at 0.5 keV per bin

Spreadsheet has 2 inputs

Scales pre-tabulated results based on ZAID and mass

ZAID	Name	Mass	
92234	U234	2.53E-10	
92235	U235	3.71E-05	
92236	U236	4.30E-06	
92237	U237	7.31E-09	
92238	U238	3.19E-04	
92239	U239	5.27E-10	
93237	Np237	1.50E-07	
93238	Np238	4.32E-10	
93239	Np239	7.59E-08	

Name	Zr95	Zr93	Y91	Y90	Xe135	Xe134	Xe133	U239	U238	U237	U236
Specific Activity	7.9513E+14	93055000	9.08E+14	2.01E+16	9.4E+16	0	6.93E+15	1.24E+18	12435.7	3.02E+15	239279
Yield	0.9892	4.3E-06	0.0026	1.4E-08	1.745797	2.7	0.475749	0.595744	0.000742	0.64102	0.00097
	Norm	Norm	Norm	Norm	Norm	Norm	Norm	Norm	Norm	Norm	Norm
Norm	7.8654E+14	400.1365	2.36E+12	2.82E+08	1.64E+17	0	3.3E+15	7.39E+17	9.227289	1.94E+15	2322.4
	Tallies	Tallies	Tallies	Tallies	Tallies	Tallies	Tallies	Tallies	Tallies	Tallies	Tallies
	6.56E-03	3.00E-09	8.10E-03	9.97E-03	4.27E-03	5.96E-03	0.000763	2.85E-04	1.12E-04	1.00E-03	1.55E-0
	3.65E-03	2.00E-09	4.51E-03	5.55E-03	2.38E-03	3.32E-03	0.000426	1.58E-04	6.23E-05	5.62E-04	8.63E-0
	2.09E-03	0.00E+00	2.58E-03	3.17E-03	1.37E-03	1.90E-03	0.000246	9.14E-05	3.60E-05	3.25E-04	5.02E-0
	6.90E-04	1.00E-09	8.47E-04	1.04E-03	4.59E-04	6.30E-04	8.44E-05	3.07E-05	1.24E-05	1.11E-04	1.74E-0
	1.39E-04	0.00E+00	1.64E-04	1.96E-04	1.01E-04	1.29E-04	2.06E-05	6.85E-06	3.34E-06	2.73E-05	4.56E-0
	2.68E-05	0.00E+00	2.58E-05	2.57E-05	2.88E-05	2.69E-05	7.92E-06	1.93E-06	1.50E-06	1.03E-05	2.07E-0
	1.44E-05	0.00E+00	1.01E-05	6.89E-06	2.09E-05	1.54E-05	6.31E-06	1.46E-06	1.19E-06	8.57E-06	1.67E-0
	1.36E-05	1.00E-09	8.91E-06	5.85E-06	2.06E-05	1.47E-05	6.15E-06	1.48E-06	1.20E-06	8.56E-06	1.53E-0
	1.35E-05	1.00E-09	8.54E-06	5.76E-06	2.06E-05	1.47E-05	6.25E-06	1.45E-06	1.25E-06	8.55E-06	1.68E-0
	1.34E-05	0.00E+00	8.87E-06	5.77E-06	2.05E-05	1.45E-05	6.12E-06	1.41E-06	1.27E-06	8.60E-06	1.66E-0
	1.38E-05	0.00E+00	9.01E-06	6.05E-06	2.06E-05	1.47E-05	6.3E-06	1.56E-06	1.26E-06	8.63E-06	1.67E-0
	1.38E-05	0.00E+00	9.12E-06	5.92E-06	2.06E-05	1.48E-05	6.41E-06	1.71E-06	1.29E-06	8.71E-06	1.72E-0

Gamma Estimation

Neutron Signature

SOURCES-4C

- MCNP6.2
- Neutrons are generated in the fuel region of the pebble
 - Each neutron emitting nuclide in used fuel is modeled independently
 - Includes both spontaneous fission and (α,n) reactions
- Output will be energy dependent neutron flux at the surface of the pebble

Acknowledgements

 This work is performed with the support of U.S. Department of Energy's Nuclear Energy University Program (NEUP) with the Award No. DE-NE0009304

Spoiler Alert

New NEUP MC&A Grant Awarded

- Development of a Benchmark Model for the Near Real-Time Radionuclide Composition Measurement System using Microcalorimetry for Advanced Reactors
 - Braden Goddard (VCU), Kyle C. Hartig (UF), Zeyun Wu (VCU), Mark Croce (LANL), and Shayan Shahbazi (ANL)
 - Aug. 2024 Sept. 2027
 - -\$1,000k + \$100k

Pebble Database for PBR MC&A – NEUP

Advanced Reactor Safeguards & Security Spring Working Group Meeting, May 14 – May 16, 2024 Braden Goddard, Ben Impson, Kashminder Mehta, Holden Walker, Zeyun Wu

College of Engineering Mechanical and Nuclear Engineering