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Motivations of the Work

• Burnup measurement is the key to deciding if the 
pebble should be discharged or recycled during the 
operation of a PBR reactor

• Burnup measurement faces two challenges:

• High throughput

• High accuracy 

• Objectives

• Create and validate a workflow for modeling and simulation 
of both burnup and gamma-ray detection

• Build ML models

• Study performance of ML models
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Pebble-bed reactor - Wikipedia

https://en.wikipedia.org/wiki/Pebble-bed_reactor


Modeling and Simulation Workflow
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Include burnup model 
and collimation



Full-core Burnup Model

• Extended the simple lattice 
model into a full PBMR model

• Validate the Serpent simulation 
results with the ones generated 
in Oak Ridge Isotope GENeration
(ORIGEN) 

• Add collimator to the workflow 
to reduce the photon flux
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Cut through Side View

Zoomed In Quarter Core

Pebble in Core

Full core model of a PBMR design



Machine Learning for Burnup Measurement

• We have demonstrated promising 
results with our ML models
• Significantly outperforming linear 

regression method

• Specifically, high performance at short 
cooling

• Results were published last year

C. X. Soto et al. "A Better Method to 

Calculate Fuel Burnup in Pebble Bed 

Reactors Using Machine 

Learning," Nuclear Technology, DOI 

10.1080/00295450.2023.2200573
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Example Gamma Spectra of a Pebble
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---- no collimation



Explainability of the MLP Model
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Rank Energy (keV) Energy (keV) Rank Energy (keV) Energy (keV)
1 891.153 2740.737 13 61.281 389.433

2 446.385 2754.297 14 318.921 348.753

3 443.673 888.441 15 58.569 584.697

4 337.905 308.073 16 340.617 354.177

5 118.233 118.233 17 280.953 421.977

6 278.241 2735.313 18 893.865 66.705

7 180.609 337.905 19 205.017 2770.569

8 286.377 58.569 20 899.289 405.705

9 36.873 446.385 21 272.817 61.281

10 55.857 443.673 22 888.441 351.465

11 896.577 2751.585 23 316.209 69.417

12 66.705 55.857 24 69.417 454.521

Top 24 energies identified by our LIME-based explainability analysis, 
for the 12-hour and 120-hour cooling condition dataset



Updates in the Burnup Model in FY24

• The initial simulation of the spent fuel pebbles was simplified and 
lacked some of the required complexity of pebble traveling through a 
core.

• Some of the key parameters that needed some additional complexity 
include:
• Consideration of the radial flux and irregular travel path of a pebble down the 

core.

• Variation in the flux and power on each pass/cycle of a pebble through the core.

• Slight variation in cooling time to simulate real reactor operation.

• Other local power/flux considerations such as proximity of pebble to control rod 
position.
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Simulation

• Each pebble cycled/passed through the core 8 times (for a total 
of about 100 days per cycle).

• Cooling time was set to 12±1% hours.

• Each pebble has a slightly different time to travel from top to 
bottom of the core.

• To simulate this effect, we used an average of 100 day with 
±25-day variation in residence time.

• The power density on a pebble was set at a peak of 0.057kW/g.

• This power density was resampled to follow the cosine shape 
of the power profile in a generic core depending on the zone 
the pebble is in for that step.

• Spectra of 500 used pebbles were generated.
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Results from the First ML Test

• Initial ML model training on new data results in 
significant convergence challenges

• We know the expected model capacity (i.e., 
sensible model hyperparameters) of the ML 
model for gamma spectra data from previous 
results

• Convergence failures are likely because of the 
significant increase in data variance

• Attempts to model increased variance with larger ML 
models result in rapid overfitting due to limited data

• Conclusion: ML training is currently data-starved
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Left: Samples of training runs for nominal (top) and moderately increased-capacity (bottom)
models (results for CNN-MLP hybrid shown here). Validation loss quickly plateaus, or climbs 
then plateaus (indicative of convergence and overfitting issues). Right: samples of 
uncorrelated model predictions with regression to mean value; indicates training failure.



Ongoing ML Model Work

• We anticipate NN model convergence issues may be resolved with increased data 
volume
• Conclusion supported by our experience in the previous datasets and quality of training 

failures observed in the recent trainings
• Potential resolutions being considered

• Generate more data through modeling and simulation
• Explore ML architectures that do not rely on learned

embeddings, i.e., those that operate in original feature space
• Experiment with dimensionality reduction

techniques and data projections for classical
regression

• Quantify variance changes relative
to previous datasets and their effects on ML
model training
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Preliminary exploration of variance contributions to ML 
model training by transforming data with a dampening factor



Next Steps

• Continue modeling and simulation to produce more spectra for ML 
trainings.

• Tune and train ML models.

• Report the results in a journal paper
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