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Motivations of the Work

 Burnup measurement is the key to deciding if the
pebble should be discharged or recycled during the
operation of a PBR reactor

 Burnup measurement faces two challenges:
 High throughput
 High accuracy

 Objectives

e Create and validate a workflow for modeling and simulation
of both burnup and gamma-ray detection

e  Build ML models
e  Study performance of ML models
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https://en.wikipedia.org/wiki/Pebble-bed_reactor
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Modeling and Simulation Workflow Q@;@@
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Full-core Burnup Model

Extended the simple lattice
model into a full PBMR model

Validate the Serpent simulation
results with the ones generated
in Oak Ridge Isotope GENeration
(ORIGEN)

Add collimator to the workflow
to reduce the photon flux

Top view
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Cut through Side View
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Pebble in Core

Full core model of a PBMR design




Machine Learning for Burnup Measurement LO\)

We have demonstrated promising
results with our ML models

* Significantly outperforming linear 60.000
regression method

50.000

* Specifically, high performance at short

cooling 40.000
* Results were published last year 30000
C. X. Soto et al. "A Better Method to 20,000
Calculate Fuel Burnup in Pebble Bed o

Reactors Using Machine

0.000

Learning," Nuclear Technology, DOI
10.1080/00295450.2023.2200573
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Explainability of the MLP Model L J

O
Top 24 energies identified by our LIME-based explainability analysis, f
for the and cooling condition dataset

BEETT® Energy (keV) Energy (keV) [GEL@M Energy (keV) Energy (keV)
1| 891.153 2740.737 61.281 389.433
2| 446.385 2754.297 318.921 348.753
BE 443.673 888.441 58.569 584.697
4 | 337.905 308.073 [ETG 340.617 354.177
5 | 118.233 118.233 KW 280.953 421.977
6 | 278.241 2735.313 893.865 66.705
180.609 337.905 205.017 2770.569
8 | 286.377 58.569 [EL0) 899.289 405.705
e 36.873 446.385 [IPX 272.817 61.281
55.857 443.673 [IEY; 888.441 351.465
896.577 2751.585 [IPE! 316.209 69.417
66.705 55.857 69.417 454.521
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Updates in the Burnup Model in FY24 @3@@
©]

* The initial simulation of the spent fuel pebbles was simplified and
lacked some of the required complexity of pebble traveling through a
core.

* Some of the key parameters that needed some additional complexity
include:

* Consideration of the radial flux and irregular travel path of a pebble down the
core.

 Variation in the flux and power on each pass/cycle of a pebble through the core.
* Slight variation in cooling time to simulate real reactor operation.

e Other local power/flux considerations such as proximity of pebble to control rod
position.
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Simulation

* Each pebble cycled/passed through the core 8 times (for a total
of about 100 days per cycle).

e Cooling time was set to 12+1% hours. !

e Each pebble has a slightly different time to travel from top to
bottom of the core.

* To simulate this effect, we used an average of 100 day with
+25-day variation in residence time.

* The power density on a pebble was set at a peak of 0.057kW/g. . |/ S

* This power density was resampled to follow the cosine shape
of the power profile in a generic core depending on the zone
the pebble is in for that step.

»
>

Power Profile

* Spectra of 500 used pebbles were generated.
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Results from the First ML Test =8 )5

* Initial ML model training on new data results in ” : ‘
significant convergence challenges ) L

* We know the expected model capacity (i.e., . P
sensible model hyperparameters) of the ML . ,Ln M -

model for gamma spectra data from previous . galiidn

results —— -
« Convergence failures are likely because of the
significant increase in data variance .
e Attempts to model increased variance with larger ML § E
models result in rapid overfitting due to limited data ” Y |
. C .. TN IITPT W
e Conclusion: ML training is currently data-starved “ “VWWWWWWM

El) s =0 ER
Actual burnup values (MWd/kgu)

Left: Samples of training runs for nominal (top) and moderately increased-capacity (bottom)
models (results for CNN-MLP hybrid shown here). Validation loss quickly plateaus, or climbs
then plateaus (indicative of convergence and overfitting issues). Right: samples of
uncorrelated model predictions with regression to mean value; indicates training failure.
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Ongoing ML Model Work @@@)

* We anticipate NN model convergence issues may be resolved with increased data

volume

* Conclusion supported by our experience in the previous datasets and quality of training
failures observed in the recent trainings

* Potential resolutions being considered

* Generate more data through modeling and simulation

* Explore ML architectures that do not rely on learned
embeddings, i.e., those that operate in original feature space °

* Experiment with dimensionality reduction |
techniques and data projections for classical Ty
regression P LA AN RN A

* Quantify variance changes relative
to previous datasets and their effects on ML
model training ;

Preliminary exploration of variance contributions to ML
model training by transforming data with a dampening factor
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Next Steps Q@@ )

e Continue modeling and simulation to produce more spectra for ML
trainings.

e Tune and train ML models.

e Report the results in a journal paper
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