ADVANCED REACTOR SAFEGUARDS & SECURITY

DCSA for HTGRs

Defensive Cyber Security Architecture

PRESENTED BY

=11

Lee Maccarone

14 May 2024

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2024-06070PE

- How do we protect facility functions to minimize the impact of an adversary who has gained access to plant systems?
- How can we architect our systems to maximize our opportunity to detect a cyber-intrusion?
- How can we leverage safety analyses to inform cybersecurity designs?
- Goals:
 - Demonstrate DCSA design approach (part of the draft AR cybersecurity reg. guide)
 - Provide HTGR DCSA template as starting point for industry

DCSA is a key part of the draft AR cybersecurity reg guide (DG-5075)

DCSA Model

Technical Approach

HTGR Overview

How do we protect facility functions to minimize the impact of an adversary who has gained access to plant systems?

Example Basic Zone Detail Level 1 **IT** Systems Zone 3A Zone 3'A **Helium Circulator System Reactivity Control System** Data Level 2 Maintenance Work Control **RPS** Trip* Historian Circulator Circulator Rod Stepper Speed Motor Position Motor Helium Fuel Start-Up & **NI Feedwater** Level 3 Circulator Handling Shutdown System System System System *physical signal Proximity Dependence Reactor Reactivity Zone 4A Zone 4B NI HVAC NI Steam Cavity Level 3' Control **Reactor Protection System Reserve Shutdown System** System System Cooling System System **RPS** Trip* **RPS** Trip* Reactor Reserve Helium Level 4 Protection Shutdown Service Rod Release System System System Position Mech.

Ideal Defensive Cyber Security Architecture

Event tree analysis informs DCSA zones

Reactor Licensing Modernization Project Demonstration." 2018.

- Assigned functions to levels
- Wrote code to perform combinatorial analysis of compromising events and identify where design constraints are violated
- Dependency analysis in progress
- ANS Annual Conference paper: Demonstrates event tree design approach for DCSA
- On track for FY24 M2 report

Tasks to Conclude the FY

- Impact
 - Detailed demonstration of Tier 2 analysis for industry
 - Template of DCSA as starting point for HTGR designs
- Demonstrate another DCSA design approach for another class of advanced reactor
- Integration with other ARSS projects:
 - DCSA analysis scripts can feed ARCADE cyber-attack simulator
 - DCSA analysis scripts can inform blended cyber-physical attack simulation
 - Physical protection system DCSA

Questions?

Team: Lee Maccarone, Mike Rowland, Bob Brulles