ADVANCED REACTOR SAFEGUARDS

University Advanced Reactor Activity Assessment

PRESENTED BY Azaree Lintereur (Collin McDowell)

Los Alamos National Laboratory

05/14/2024

9

HHH

===

Advanced reactor/microreactor technology is gaining interest for an increasing variety of applications.

wnn

• Local power

Background

- Remote locations
- Isotope production

 Universities in the United States represent a growing user base exploring the feasibility of siting advanced/microreactors on college campuses.

Universities Consid for Campus Power 11 2022 by Chira Tond

share 🕜 🚷 🔅

With Micro Nuclear Power

A new generation of micro nuclear provide a decarbonized electricity a

inv nuclear reactors that produce one-hundredth the e

A nuclear power plant, image used courtesy of Pixabi

of acres of land, soon there will be an alternative; tiny nuclear reactors that produce only one-hundredth th

ful amounts of electricity — nearly enough to run a small campus, a hospital or a milita

• The goal of the proposed effort is to perform a preliminary scoping study of domestic universities' advanced/microreactor activities.

ROVANCED REACTOR

Project Overview

- Project Status
 - Started September 2023

• Tasks

- University Engagement
 - Preliminary assessment
 - Questions/topics for engagement
 - Outreach
- Regulation Overview
 - Review regulations
- Future Planning
 - Identify potential future activities
 - Reports; Focused workshops; Individual engagements; etc.

University nuclear department and program overview (visual example only!)

 \Rightarrow

University nuclear department and program overview (visual example only!)

4

University Overview – Advanced/Micro Reactors

 Universities interested in advanced reactors are not limited to those with nuclear programs

Activity Overview

- Different stages of planning
 - Assessment
 - Memorandum of Understanding
 - Preparing for license application
 - Current application
- Different technologies
- Different use cases
 - Demonstration
 - Research reactor
 - Power

Approach

- NEDHO
- TRTR
- University Consortia
- Professional Societies and Conferences

clear Securit

UNIVERSITY

RESEARCH

OPPORTL

U.S. DE

NUCLE.

AWARD

• Direct Engagement

Programs emphasizing nuclear and radiological se engineering and technology

AN

MMM

University Assessment and Engagement

- Universities were contacted directly to gain increased awareness of their current activities and planning status
 - Topics
 - Advanced/microreactor technology that is being pursued
 - Proposed use
 - Current stage of planning
 - License pathway
 - Status of security planning
 - Status of safeguards (MC&A) planning

University Overview – Advanced/Micro Reactors

Abilene Christian University (ACU)

- Technology
 - Liquid fueled molten salt (1 MWth)
 - Online feed and removal
 - Onsite analytical lab
 - Vendor: NATURA
- Status
 - Construction permit submitted
- Licensing Pathway
 - Research reactor (Class 104(c))
- Safeguards and Security
 - Engaged with:
 - Sandia National Laboratories
 - Oak Ridge National Laboratory
 - NRC

University of Illinois Urbana Champaign (UIUC)

- Technology
 - High-temperature gas-cooled reactor
 - Vendor: Ultra Safe Nuclear Corporation
- Status
 - Preapplication materials submitted
- Licensing Pathway
 - Research reactor (Class 104(c))
- Safeguards and Security
 - Safeguards Information Protection Plan

Penn State University (PSU)

- Technology
 - Heat pipe microreactor (eVinci)
 - Vendor: Westinghouse
- Status
 - Preparing for license application
- Licensing Pathway
 - Research reactor
- Safeguards and Security
 - To be determined

- Three universities moving forward with licensing
- Three different technologies
- Licensing as research reactors
 - One university is pursuing licensing a research reactor sited in an existing multipurpose facility, as allowed for in 10 CFR 50(a)(2)(x)
 - One university has an existing research reactor
 - One university previously had a research reactor

Regulations

- 10 CFR 50
 - Class 104
- Others?
 - 10 CFR 73
 - 10 CFR 74
 - 10 CFR 20
 - 10 CFR 51
 - 10 CFR 52
 - 10 CFR 53
 - NUREGs
 - SECY-22-0072
 - SECY-23-0021
 - Regulatory Guide 1.233

NRC Discussions

- Engage early
- RTRs: "Potential Scenarios"
 - Microreactors: MHA vs DBA

& GULATION

C

- Application of 10 CFR 53
 - RTRs will stay under 10 CFR 50
- Part 73.55a7 (alternative security measures)
- Consequence evaluation
- Part 74:
 - FNMC Plan + NMMSS

Regulatory Considerations

- Assumptions vs requirements
- HALEU (category)
 - Material attractiveness in fuel form
- Security "education"
- Law enforcement training
 - MOUs
 - Alarm Response Training through ORS
- Non-power production utilization facility
- Comparison to medical isotope facilities

Initial Recommendations and Requests

- One-on-one meetings
 - Developing MC&A processes
 - Establishing physical security procedures
- Physical and cyber security support
- Dedicated task force to explore the domestic-international safeguards interface
- Workshops
- Faculty laboratory staff exchange program
- Research opportunities
- Course support
 - Cyber security
 - Physical protection
 - Instrumentation
- Training

Eon.

E4.

Write final report...

ADVANCED REACTOR SAFEGUARDS

University Advanced Reactor Activity Assessment

PRESENTED BY Azaree Lintereur (Collin McDowell)

Los Alamos National Laboratory

05/14/2024

9

HHH

===

