

ADVANCED REACTOR SAFEGUARDS & SECURITY

Advanced Sensor Fusion Using Low-Cost Sensors for Dramatic Physical Security Cost Reduction

Deliberate Motion Analytics
SBIR Phase I

PRESENTED BY

Peter Blemel - Management Sciences, Inc. May 14, 2024

Project Information

NANCED REACTOR SAFEGUAROS OR SECURITL

Project Type: DoE SBIR Phase I

Principal Investigator: Carl Stern, PhD

Project Title: Advanced Sensor Fusion Using Low-Cost Sensors for

Dramatic Physical Security Cost Reduction

SBIR Topic Number: C56-40.l

Topic Title: Advanced Technologies for Nuclear Energy Advanced and

Small Reactor Physical Security Cost Reduction

Company Name: Management Sciences, Inc.

6022 Constitution Ave NE

Albuquerque, NM 87110

SBIR Problem Statement

- AR and SMR (ASMR) offer benefits over alternatives due to compact designs
 - Emissions Can be pivotal in efforts to reach net zero by 2050
 - Cost Can be competitive with renewables and carbon alternatives
 - Utility Build in factory and ship to customer site for electricity and process heat
- Today's regulatory requirements increase ASMR's levelized cost of electricity (LCOE)
 - Including physical protection requirements that increase costs & LCOE
- Impacting ASMR's potential competitiveness in energy markets
 - Making alternatives cheaper
- Proposed and draft regulatory changes are in the works to help lower LCOE
- Make innovative DMA enhancements that support regulatory changes
 - Enabling new performance-based security designs
 - Lowering ASMR's LCOE and increasing competitiveness against alternatives

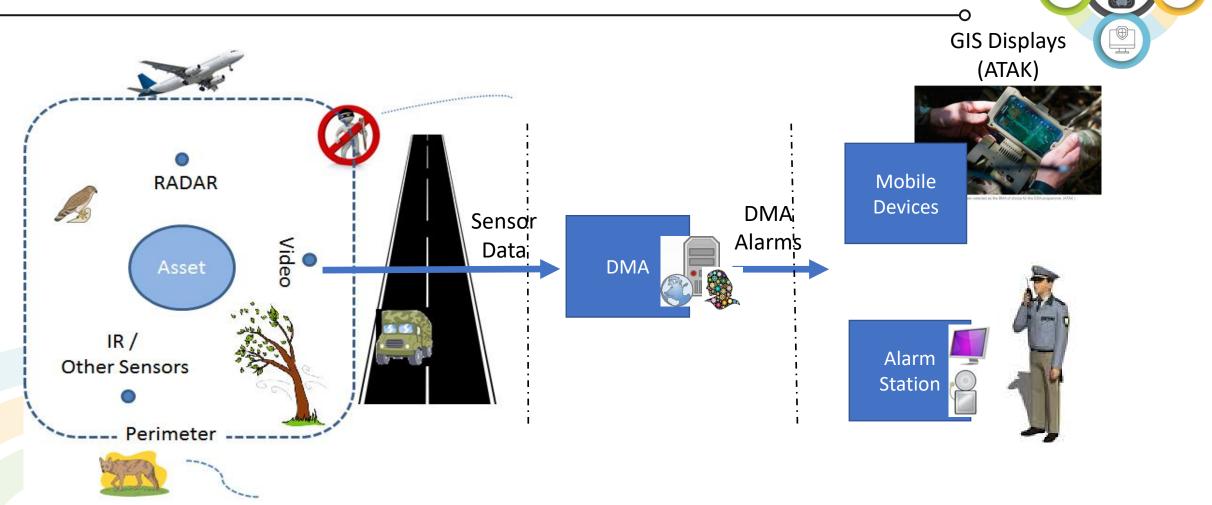
Background

POSPEGUAROS PROSPECTOR OF SPECURIZED PROSPECTO

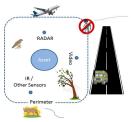
Site/sector PPS layout and sensor choices for nuclear power plants (NPPs) are driven by strict regulations, requirements, and approval

- Defense in depth and design basis threat meet requirements but increase costs
- Engineered detection area separated by two fences
- Motion sensors, infrared and electro-optical, radars, cameras, etc.
- Alarm station software (e.g., Vindicator, AIM, PICARD) notified via dry contact switch

PPS Cost Drivers and DMA Advantage


- ROSPEGUAROS PROSPEGUAROS PROSPECUAROS PROSPEGUAROS PROSPECUAROS PROSPE
- Defense in depth and design basis threat meet requirements but increase costs
 - Multiple layers of detection, delay, and response increase complexity
 - Expensive site preparation (digging, power, comms, fencing)
 - Expensive sensors
 - Expensive monitoring
- All sensors suffer from high nuisance and false alarm rates (NAR/FAR)
 - Reducing confidence in the security system
 - Leading to complacency of staff monitoring alarms
 - Driving up operational costs (additional responders, time to evaluate alarms)
 - Excessive NAR/FAR leads to possible regulatory compliance issues, fines, or worse
- Just adding more sensors alone results in more cost and increased NAR/FAR
- DMA high detection and low NAR/FAR will make AR/SMR competitive

What is DMA?



- Advanced sensor fusion system
 - First developed as a smart nuisance and false alarm filter extending prior SBIR R&D
 - Grew into high-performance artificial intelligence (AI) technology
 - Tracking intruders & alarm sources
 - Analyzing motion-behavior to identify intruders and filter out nuisance/false alarms
- DMA R&D and AI prototype developed in SBIR R&D
 - Close collaboration with Sandia National Labs (SNL)
 - Funded by DoE Advanced Reactor Safeguards and Light Water Reactor Sustainability areas
- Has demonstrated dramatic nuisance alarm reductions
 - In operational environments during prototype testing at Sandia STEC and NPP sites
- Current status: Patented, high COTS TRL prototype

Operational Concept

DMA Intrusion Detection Process

- Sensors stream data to DMA in real time
 - Open architecture supports RADAR, LIDAR, video, PIR, & more
- DMA analyzes detections using AI algorithms
 - Filters out events that to do not indicate an intruder
 - Issues real time alerts to responders.
- Alarm outputs
 - Dry contact switch, SEIWG
 - CAS / SAS software integrations
- Real time remote displays
 - Web pages
 - Mobile devices (ATAK/ COVTa

DMA SBIR Approach to Cost Reduction

- Site Design
 - Integration with Modeling and Simulation validates optimal performance-based security designs
- Site preparation
 - Reduced need for rigorous landscape engineering
 - Eliminate digging and trenching for sensor power & comms
- Infrastructure
 - Fewer fences, poles, cameras, cables, FDBs
- Operations
 - Fewer response forces required less often, responding faster, and better informed
 - Enabling remote response forces serving multiple AR/SMRs and other innovative cost-saving concepts

Phase I Highlights

New and improved algorithms

Prototyped and tested using previously recorded and new test data

Integrate DMA directly into sensors

- Preliminary integration into small form factor RADAR embedded processor
 - Improving performance
 - Enabling mesh of nearby sensors that further improve performance
- Preliminary integration with cybersecure hardware to create secure 'DMA appliance'
 - Can be installed in field distribution boxes, network closets, and mobile
 - Tested with tactical-class cross domain solution from General Dynamics Mission Systems

Modelling & Simulation

Can replay previous intruder detections against "what if" PPS designs

Integrate DMA with mobile geospatial information sharing applications

Preliminary integration with USAF Android Team Awareness / Tactical Assault Kit (ATAK)

Phase II Development

- Minimum viable product tailored to AR/SMR customer requirements
- Customer-focused DMA maturation and productization
- Tighter integration with video analytics and computer vision
- Smart algorithms for target classification and target-aware tracking
- Third-party hardware and software integrations
 - Sensors with built-in DMA
 - CAS + SAS integration
 - First responder and law enforcement mobile app
 - Modeling and simulation
- Verification and validation at Sandia
 - Paves the way for customer adoption
- Verify that DMA meets customer requirements
 - With interested AR/SMR developers

Questions?

For more information about DMA, contact

Peter Blemel

Management Sciences, Inc.

6022 Constitution Ave, NE

Albuquerque, NM 87110

peter_blemel@mgtsciences.com