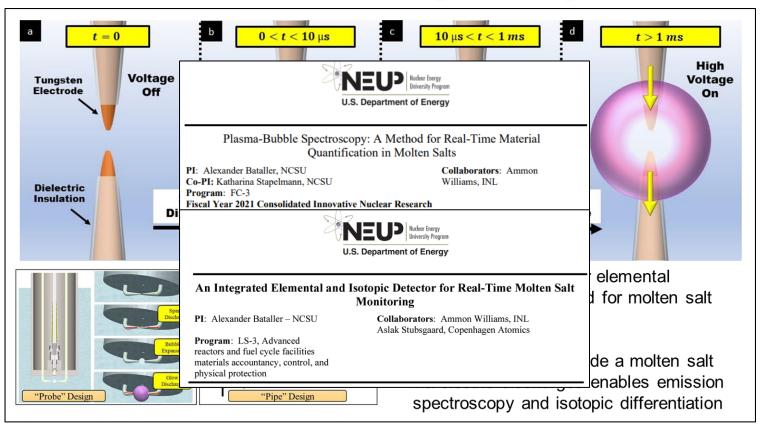

An Integrated Elemental and Isotopic Detector for Real-Time Molten Salt Monitoring

Prof. Alex Bataller Department of Nuclear Engineering North Carolina State University ARSS Fall Program Review, 2:40 pm Nov. 2nd 2023

Protecting People and the Environment

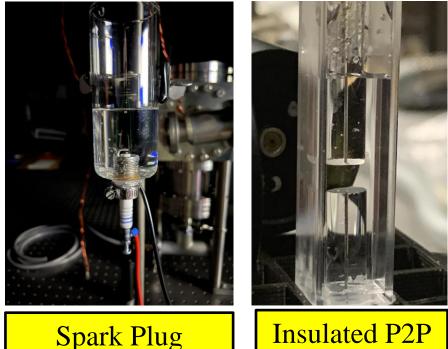
What's in the salt?


- **MSR Processing:** Many future MSR designs feature online chemical processing for continuous removal of neutron-absorbing fission products, corrosion-causing impurities (e.g., oxygen and water), and breeding fuel.
- **MSR Refueling:** Many MSR designs also require some level of periodic refueling, which will change both the quantity of fissile material and its isotopic concentration.
- **MS-Cooled Contaminants:** Salt-cooled reactors might also require process monitoring for contaminants and verifying <ppm uranium.

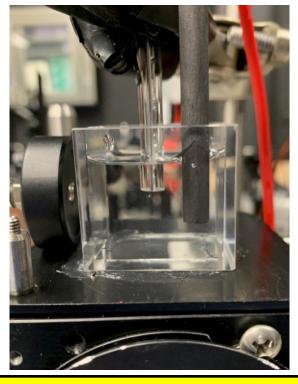
- **Pyroprocessing:** Commercial-scale processing of used nuclear fuel must also have adequate process monitoring for controlling the rate of actinide removal.
- **MPACT:** Unique mobility of flowing nuclear molten salts is problematic for material protection, accounting, and control

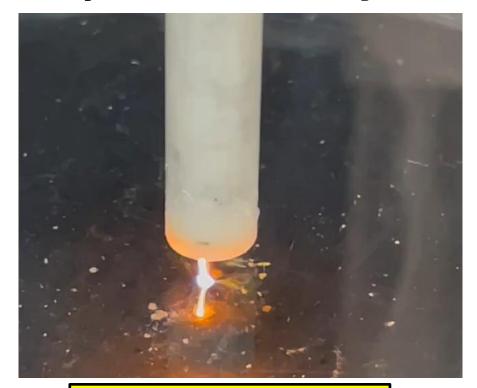
A critical challenge facing the future utilization of molten salts is the necessity of an online elemental sensor that can operate in extreme molten salt environments.

Plasma Bubble Spectroscopy

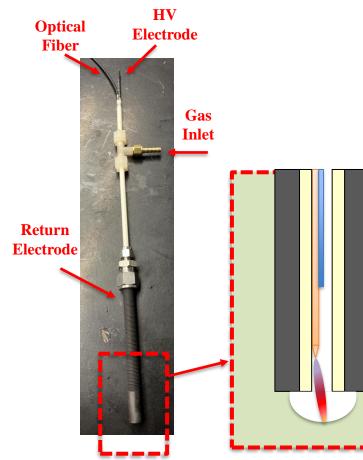

Plasma Bubble Spectroscopy

Exploration of discharge geometries in saline solutions during year 1 has greatly facilitated molten salt experiments for year 2


Point-to-Point



Best overall performing geometries were the: Contact Glow Discharge Electrolysis (CGDE) & Atmospheric-Pressure Glow Discharge (APGD)

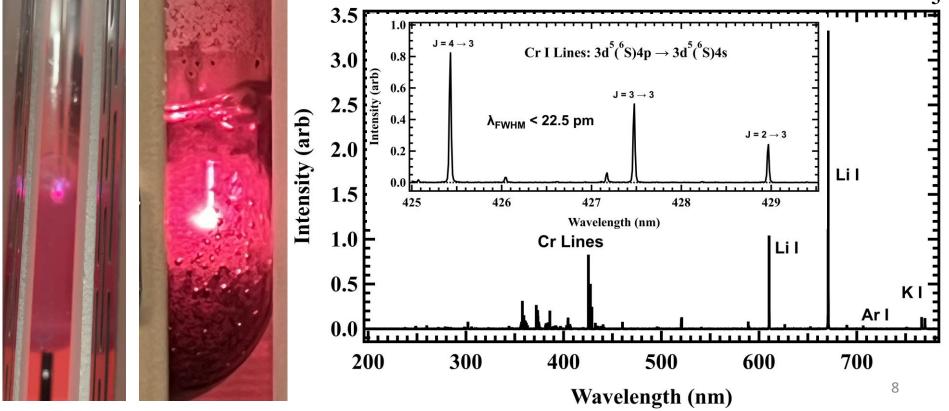


CGDE – Pulsed Circuit

APGD – DC Circuit

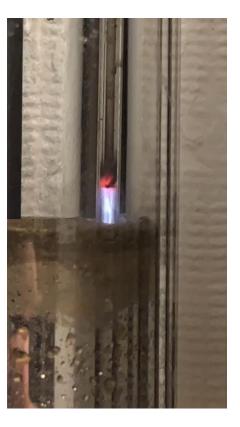
The Arc Bubbler

The Arc Bubbler


APGD submerged protects the electrode while producing stable plasma of the analyte

The Arc Bubbler: Molten salts

LiCl-KCl-CrCl₃



The Arc Bubbler: Liquid metals

NEUP R&D 2023-2026

Sensor demonstration for Longevity, Limits, and Latency

PI: Alex Bataller Collaborators: Ammon Williams (INL) & Aslak Stubsgaard (CA)

Milestone Timetable		Year 1	Year 2		Year 3			
	Quarter	1 2 3 4	1 2 3	4 1	1 2	3	4	Hinged Type Doors Inside Lighting
Research Task 1 – Develop PBS detectors: CGDE and GDE								
1.1	Develop CGDE electrode with							A Purification Unit SO 80K Flange with 6 Feedthrough
1.1	fiber optic feedthrough							
1.2	Calibrate CGDE detector							Dust Filter Alumina Spacer
1.3	Develop GDE electrode with fiber							
1.5	optic feedthrough & gas line							Temperature Controller
1.4	Calibrate GDE detector							A SS316 Tube
1.5	Develop automation software for CGDE and GDE detectors							inde the Chamber
Dee	earch Task 2 – Develop and procure							
	Develop molten salt furnaces for	e moiten sait furnac	es and loop			r r		Recessed Box
2.1	Longevity experiments (NCSU)							Spin Coate
	Develop molten salt furnaces for							
2.2	Limits experiments (INL)							Tube Furnace and more
2.3	Procure molten salt pumped loop							
	Develop plumbing and detector							
2.4	port for Latency experiments							
Research Task 3 – Perform Longevity experiments								
	CGDE: Assemble in fume hood							
3.2	CGDE: Perform Longevity							
3.2	experiments on LiCl-KCl-UCl3							
3.3	CGDE: Perform Longevity							
3.5	experiments on FLiNaK-ThF4							
3.4	GDE: Assemble in fume hood							
3.5	GDE: Perform Longevity							
5.5	experiments on LiCl-KCl-UCl3							
3.6	GDE: Perform Longevity							
	experiments on FLiNaK-ThF4							
Research Task 4 – Perform Limits experiments								
4.1	Phase 1: Test PBS detector/s with							A
-	surrogate salt at EIL							
4.2	Phase 1: Determine minimum salt							
	volume to minimize dose Phase 2: Setup PBS detectors and							
4.3	furnace in ARL							
	Phase 2: Perform Limits							SUBSCIENCE THE PROPERTY OF A
4.4	experiments with ER salt							
Res	earch Task 5 – Perform Latency exp	periments				 		antitis.
	Install PBS detector/s in molten							
5.1	salt loop and test functionality							
5.2	Procure purified salts and test							
5.2	loop ingot loading capability							
5.3	Perform Latency experiments on							Portable Molten Salt Loop with research ports on side wall
5.5	FLiNaK-ThF ₄							
								(Copenhagen Atomics)