CT-23IN110403: Analysis of Control System Ransomware Variants

CT-23IN110503: Evaluation of Advanced Sensors and Instrumentation

CT-23IN110501: Cyber Security for Nuclear Machine Learning Applications

Advanced Reactor Safeguards and Security

Chris Spirito
Idaho National Laboratory

CT-23IN110403: Analysis of Control System Ransomware Variants (i)

Overview

- Comprehensive exploration of ransomware threats to Industrial Control Systems (ICS) within the U.S. critical infrastructure.
- Emphasis on the deployment of virtual testbeds for organizations to simulate and test network vulnerabilities.
- Detailed methodologies for setting up virtual testbeds and conducting ransomware attack simulations.
- Exploration of various ransomware types, entry points, and potential mitigation strategies.

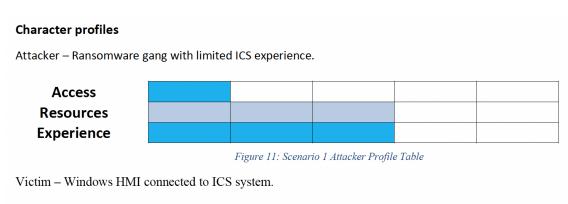
Why does industry care?

- Critical infrastructure sectors, including Energy and Government Facilities, have been targeted by ransomware attacks.
- Ransomware attacks can lead to significant operational, financial, and reputational damages.
- Virtual testbeds offer a cost-effective and adaptable solution for organizations to test and strengthen their cybersecurity defenses.
- The ability to simulate real-world scenarios can help organizations prepare for and respond to actual threats more effectively.

Why is this work important?

- Ransomware attacks on ICS pose significant threats to national security and critical infrastructure.
- The increasing frequency and impact of ransomware attacks necessitate proactive measures and robust cybersecurity practices.
- The ability to simulate and test vulnerabilities can help in the early detection and mitigation of potential threats.
- Understanding and categorizing Indicators of Compromise (IoCs) is crucial for safeguarding network and system security.

- Successful development and deployment of a modular virtual testbed for simulating ransomware attacks.
- Conducted experiments exploring diverse network entry points, ransomware architectures, and IoCs.
- Demonstrated the testbed's adaptability to distinct testing objectives, including the use of open-source features like ScadaBR.
- Provided comprehensive instructions for virtual testbed configuration and highlighted potential areas for further research and development.


CT-23IN110403: Analysis of Control System Ransomware Variants (ii)

Scenarios

- Attacker Profiles and Victim Profiles were crafted.
- Attacker Profiles included:
 - Access
 - Resources
 - Experience
- Victim Profiles included:
 - Sensitivity
 - Exposure
 - MITRE ICS ATT&CK Impact Codes
- Background
- Attack Sequence
- Experimental Format (goals, configuration, procedure, evaluation)
- Experimental Findings
- Knowledge, Skills, and Attitudes
 - Recommendations for ICT System Administrators
 - Recommendations for OT Personnel
 - Recommendations for Regulatory Authorities

Themes

- HMI Encryption and Exfiltration
- Altered Actuator State (Malicious State Command Injection)
- Altered Control Setpoint (Malicious Parameter Command Injection)

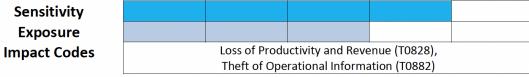


Figure 12: Scenario 1 Victim Profile Table

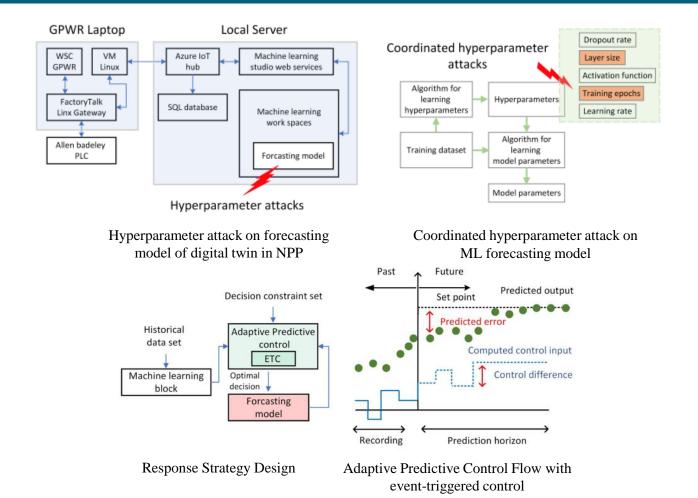
CT-23IN110503: Evaluation of Advanced Sensors and Instrumentation (i)

Overview

- Exploration of the integration and security of digital twins in nuclear power plants, with a focus on hyperparameter attacks on machine learning models.
- Detailed analysis of the potential vulnerabilities and threats posed by hyperparameter manipulations on digital twin machine learning models.
- Introduction of adaptive predictive control strategies and eventtriggered mechanisms to counteract hyperparameter attacks.
- Comprehensive study of the implications of these attacks on the operational integrity and safety of nuclear power plants.

Why does industry care?

- Nuclear power plants are critical infrastructures, and any compromise in their operational integrity can have catastrophic consequences.
- The industry is progressively adopting digital twin technology, making it a prime target for cyber adversaries.
- Ensuring the security of digital twins can lead to cost savings, operational efficiencies, and enhanced safety protocols.
- Regulatory implications and the potential for stringent guidelines necessitate proactive measures to secure digital twin implementations.


Why is this work important?

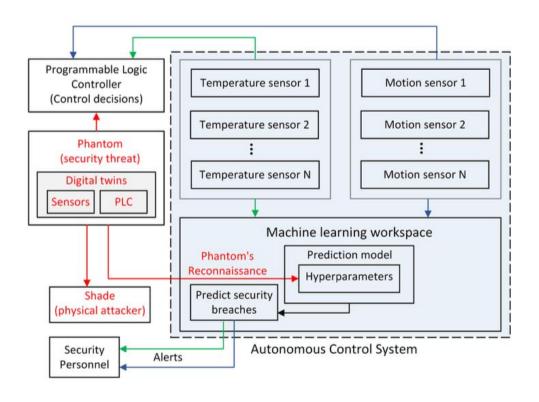
- The increasing integration of digital twins and machine learning models in nuclear power plants presents a new set of cybersecurity challenges.
- Hyperparameter attacks can compromise the predictive capabilities of digital twins, leading to potential operational inaccuracies and safety concerns.
- The nuclear industry's reliance on digital twins for optimizing operations and ensuring system reliability necessitates robust security measures.
- Ensuring the security and integrity of digital twins is paramount for the safety and reliability of nuclear power plants.

- Development and validation of an adaptive predictive control strategy anchored on an event-triggering law to counteract hyperparameter attacks.
- Successful simulation showcasing effectiveness and robustness of the proposed method against time-varying multi-rate hyperparameter attacks.
- Introduction of advanced control inputs, decision matrix integration, and machine learning-based predictive control for enhanced security.
- Recommendations for Regulators, Operators, and Cyber Teams to enhance security and resilience of digital twin implementations in NPPs.

CT-23IN110503: Evaluation of Advanced Sensors and Instrumentation (ii)

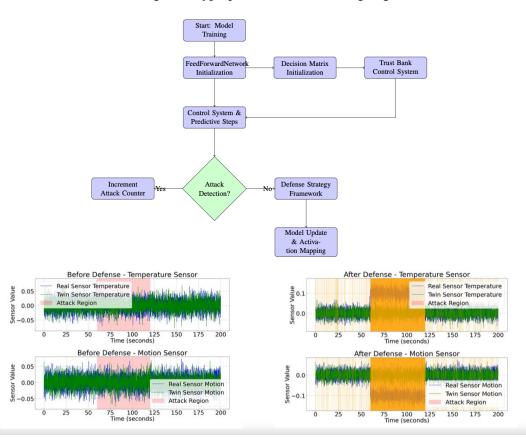
Algorithms

- Multi-Rate Time-Varying Coordinated Hyperparameter Attacks on Machine Learning Model
- Improved Predictive Control with Event-Triggered Adaptation


```
Algorithm 1: Multi-Rate Time-Varying Coordinated Hyperparameter Attacks on Machine Learn-
ing Model
  Output: A decision matrix D_{i,j} to indicate the transition from a less intelligent attack to a high
            intelligent attack, and a function r(t) representing the multi-rate attack pattern over time
  Initialize D_{i,j} \leftarrow \text{zero matrix}, attackSuccessful \leftarrow \text{false}, highIntelligenceAttack \leftarrow \text{false},
  t \leftarrow 0 r(t) \leftarrow initial rate :
 if attackSuccessful = false then
      Penetrate multiple ML hyperparameters \eta, \rho, H, E, f(\cdot); while true do
          if highIntelligenceAttack = false then
                   Low intelligence attack
               Randomly assign inappropriate values \eta', \rho', H', E', f'(\cdot) based on multi-rate function
               g(t, r(t)); Apply changes to the model; Evaluate performance P'; if P' < P - \Delta P
                   highIntelligenceAttack \leftarrow true; D_{i,t} \leftarrow 1 \text{ for all affected hyperparameters}
              Update the attack rate r(t) based on predefined rule; t \leftarrow t + 1;
          else if highIntelligenceAttack = true then
               // High intelligence attack
               Perform analysis of hyperparameters \eta, \rho, H, E, f(\cdot); Identify and classify critical ones
               Assign misleading values within threshold \eta'', \rho'', H'', E'', f''(\cdot) based on multi-rate
                function h(t, r(t)) and optimal stealthy approach; Apply changes to the model;
               Evaluate performance P'': if P'' \approx P - \Delta P and P'' < P' then
                 attackSuccessful \leftarrow true; D_{i,t} \leftarrow 1 for all affected hyperparameters i; break
               Update the attack rate r(t) based on predefined rule; t \leftarrow t + 1;
  return attackSuccessful, D_{i,i}, r(t);
```

```
Algorithm 2: Improved Predictive Control with Event-Triggered Adaptation
 Input : System matrices A, B, and data y; hyperparameters, control parameters \mu, r, a, \beta, \lambda, and
 Output: Updated sliding window size, corrected hyperparameters, and optimal control gain
 Step 1: Initialization
 Initialize variables for LMI, define variables P. K. M. N for optimization:
 Step 2: Sliding Window and Hyperparameter Correction
 Function CalculateWindowSizePredictionHorizon()
    Init, ialize sliding window size and resize threshold;
    Initialize time-varying multi-rate function parameters; Initialize decision matrix D;
    foreach data point data in the window do
        Record data in the sliding window
        if number of data points < 2 then
           Continue to the next data point
        Perform linear regression data window; Predict next data point; Calculate prediction error;
        if prediction error exceeds resize threshold then
           Increase the window size:
        foreach hyperparameter h in hyperparameters do
            Calculate error err of the system with h;
                Determine intelligence level of the attack using decision matrix D
                if attack is less intelligent then
                    Adjust h using a lower intensity time-varying multi-rate function
                    Adjust h using a higher intensity time-varying multi-rate function
        foreach matrix M in matrices A and B do
            Evaluate model stability with M:
            if model is unstable then
                Adjust M to improve stability
 Step 4: Algorithm Execution
 Call CalculateWindowSizePredictionHorizon()
 Call ApplyPredictiveControlAndAdaptation():
 Return control gain K, updated hyperparameters, and system matrices
```

CT-23IN110503: Evaluation of Advanced Sensors and Instrumentation (iii)


Operation FrostFire

Digital Twin-Assisted Hyperparameter Attack on Autonomous Control Systems

Operation MirrorShield

Proactive Defense against Hyperparameter Attack using Digital Twins

CT-23IN110503: Evaluation of Advanced Sensors and Instrumentation (iv)

Overview

- Comprehensive exploration of the digital twin technology, its applications in nuclear power generation, and its interface with Advanced Sensor and Instrumentation (ASI).
- Examination of potential security concerns, attack scenarios, and vulnerabilities associated with the deployment of digital twins in nuclear settings.
- Analysis of the unique requirements of digital twins and SMRs
- In-depth study of communication and data transfer interfacing between ASI and digital twin components, including protocols and specifications.

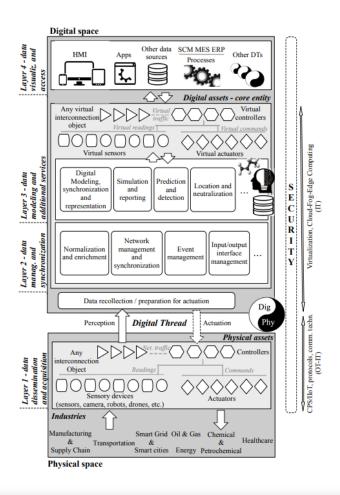
Why does industry care?

- The nuclear industry is progressively adopting digital twin technology, making it a prime target for cyber adversaries.
- Ensuring the security of digital twins can lead to cost savings, operational efficiencies, and enhanced safety protocols.
- The industry seeks to leverage the benefits of digital twins, such as predictive maintenance and streamlined operations, without compromising on security.
- Regulatory implications and potential legal liabilities necessitate proactive measures to secure digital twin implementations.

Why is this work important?

- Digital twins represent a transformative technology in the nuclear power industry, aiding in design, development, and predictive maintenance.
- The integration of digital twins in nuclear power plants introduces a new set of cybersecurity challenges and vulnerabilities.
- Ensuring the security and integrity of digital twins is paramount for the safety, reliability, and efficiency of nuclear power plants.
- The potential ramifications of a successful attack on a digital twin in a nuclear setting could be catastrophic, emphasizing the need for rigorous security measures.

- Identification and analysis of hypothetical attack scenarios, highlighting vulnerabilities in physical-digital sections of the digital twin infrastructure.
- Development of a baseline of recommended best practices for the deployment of digital twins in alignment with industry safety standards.
- Presentation of a POC, with documentation of methodology, simulations, and tests, showcasing real-life use cases and potential threats.
- Recommendations for security controls, compensating measures, and research pathways to enhance the security and resilience of DT in NPP.


CT-23IN110503: Evaluation of Advanced Sensors and Instrumentation (v)

Overview

- Layer 1: Data Dissemination and Acquisition
- Layer 2: Data Management and Synchronization
- Layer 3: Data Modeling and Additional Services
- Layer 4: Data Visualization

Attack Scenarios

- Digital Twin Components
- Physical supply chain compromise
- Digital Section replication mode, simulation mode attacks
- Communication Section cloud computing interfaces

CT-23IN110501: Cyber Security for Nuclear Machine Learning Applications (i)

Overview

- Comprehensive exploration of the intersection between Artificial Intelligence (AI) and nuclear reactors, specifically focusing on their Instrumentation and Control (I&C) systems.
- Detailed guide tailored for three distinct audiences: I&C Vendors/Developers, Nuclear Regulators, and Nuclear Reactor Operators and Cyber Defense Teams.
- In-depth analysis of various cybersecurity threats associated with AI, including Inference Attacks, Adversarial Attacks, and Trojan Attacks.
- A structured approach to understanding the challenges and opportunities presented by Large Language Models (LLMs) in the context of nuclear reactor operations

Why does industry care?

- The nuclear industry is at the forefront of adopting advanced technologies, making it essential to understand and address the associated risks.
- Ensuring the security and integrity of AI implementations can lead to cost savings, operational efficiencies, and enhanced safety protocols.
- Regulatory implications, potential legal liabilities, and international standards necessitate proactive measures to secure AI implementations in nuclear reactors.
- The industry seeks to leverage the benefits of AI, such as predictive maintenance and streamlined operations, without compromising on security.

Why is this work important?

- AI, especially LLMs, is rapidly becoming integral to nuclear reactor operations, offering enhanced operational efficiency and anomaly detection.
- The integration of AI in nuclear reactors introduces a new set of cybersecurity vulnerabilities that need to be addressed proactively.
- Ensuring the secure and responsible implementation of AI in nuclear reactors is paramount for the safety, reliability, and efficiency of these critical infrastructures.
- As AI technologies evolve, understanding and mitigating associated threats is crucial to prevent potential catastrophic outcomes in the nuclear sector.

- Identification and detailed analysis of various AI-related cybersecurity threats, providing actionable insights and recommendations for mitigation.
- Development of a robust set of guidelines and recommendations tailored for I&C Vendors/Developers, ensuring secure development and deployment of AI.
- Comprehensive regulatory guidance for Nuclear Regulators, emphasizing the importance of updated guidelines, risk assessments, and adherence to international standards.
- Provision of technical reports, scenarios, and recommendations for Nuclear Reactor Operators and Cyber Defense Teams, ensuring the secure and optimized use of AI in operational environments.

CT-23IN110501: Cyber Security for Nuclear Machine Learning Applications (ii)

Guide for Advanced Reactor & I&C Vendors

- Recommendations for Developers (Technical Reports available)
 - Inference Attacks
 - Large Language Model Attacks
 - Adversarial Attacks
 - Trojan Attacks
- Scenarios
 - Adversarial Attack (adversarial training)
 - Data Poisoning Attack

Guide for Nuclear Regulators

- **Recommendations for Regulators**
 - Guidelines for Al/ML inclusion in Cyber Security Plans
 - Legal Considerations
 - Risk Assessments and Human Studies

Guide for Operators and Cyber Defense Teams

- Recommendations for Defenders
 - Defensive Strategies for managing LLM use and access
 - Defensive Strategies for Large Language Model Attacks Protection against Membership Inference Attacks, Link Extraction Attacks.
 - Adversarial Attacks Identifying FGSM, Model Architectures
 - Defensive Strategies to protect against Trojan Attacks Data Management and Model Monitoring Recommendations, Use of Autoencoder Defenses, Neural Network Defenses

Scenarios

- Membership Inference
- Trojan Attack
- Use of Behavioral Analytics

CT-23IN110501: Cyber Security for Nuclear Machine Learning Applications (iii)

Overview

- Comprehensive exploration of machine learning (ML)-driven autonomous control systems within advanced nuclear reactor designs.
- Detailed analysis of vulnerabilities and proposed strategies for defense against potential cyber-attacks, including Inference, Trojan, and Adversarial attacks.
- A crafted cyber-physical testbed and preliminary ACS were devised to reflect potential configurations of advanced reactor control designs.
- Recommendations and strategies are presented for both traditional and AutoML models, anchoring upon the existing knowledge landscape and MLbased DT modeling for ACS.

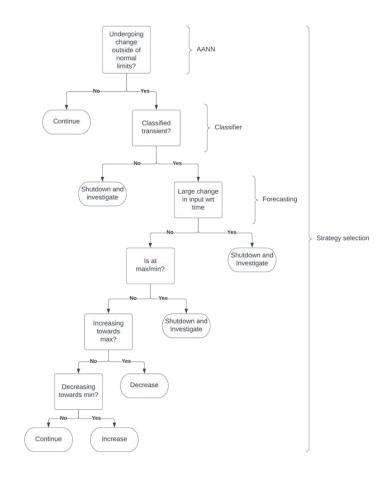
Why does industry care?

- Advanced cyber-attacks against critical infrastructure and the energy sector are becoming more common, necessitating robust defense mechanisms.
- The evolution towards advanced reactor systems utilizing digital instrumentation and controls (I&C) is essential for mitigating operations and maintenance costs.
- The integration of semi and fully autonomous control systems (ACS) emerges as a potent strategy to enhance economic feasibility of novel reactor designs.
- Ensuring the cybersecurity of ML-based DT technologies such as ACS prompts a holistic view of shared responsibility for maintaining cyber-secure ML-based systems.

Why is this work important?

- The integration of autonomous control systems (ACS) within advanced nuclear reactor designs is becoming essential for operational efficiency.
- With a significant increase in cyber-attacks targeting the energy sector, there's a compelling necessity to fortify cybersecurity protocols in safeguarding reactor systems.
- The study extends beyond conventional cybersecurity parameters, diving into potential vulnerabilities woven into ML-based DTs and ACS in advanced reactor systems.
- Ensuring robust cybersecurity in this domain not only protects against immediate threats but also fortifies the infrastructure against evolving cyber challenges.

- Development of defensive measures targeting protecting inference mechanisms and preventing unauthorized reprogramming.
- Strategies delineated for fortifying against Inference Attacks, thwarting Trojan Attacks, and mitigating Adversarial Attacks.
- Implementation of general defensive strategies, including maintaining offline backups, encrypting model data, employing multi-factor authentication, and engaging in regular audits.
- A multi-layered defense mechanism is orchestrated, ensuring comprehensive shielding against the spectrum of cyber threats in ML models integral to DT technologies and ACS implementations.


CT-23IN110501: Cyber Security for Nuclear Machine Learning Applications (iv)

Overview

- Cyber-Physical Testbed for Analyzing Autonomous Systems
- ML Based Digital Twins in Autonomous Systems
- Predictive Modeling of I/O in Autonomous System Components
- Simulated Cyber Attacks

Defensive Strategies

- Fortifying against Inference Attacks
- Thwarting Trojan Attacks
- Mitigating Adversarial Attacks
- General Defensive Strategies

Questions

