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Unique MSR features necessitate NMA
strategies that differ from LWRs
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MSRs:

• Fuel is in bulk form

• Constant feed and
removals

• Constant depletion and
decay

• Salt volume estimation

• Potentially
heterogeneous samples

• Strong radioactive
source terms

Conventional Nuclear:

• Fuel is in discrete items

• No feeds and removals outside of
outages

• Many fuel assemblies with potentially
different burnup and enrichment

• Factors that impact burnup well
characterized (axial and radial effects)

• Have methods to ensure spent fuel is
present when too hot to measure (i.e.
Cherenkov)



Material balances are key NMA components
at bulk facilities

3

• Material balance (MB) is used to quantify nuclear material for
accountancy

• Sometimes called Inventory Difference (ID) or Material
Unaccounted For (MUF)

• Basis for more complex statistical tests

• Since liquid-fueled MSRs have bulk fissile material, bulk techniques
are appropriate

MB calculation

MBt =
(
Σt
t−1inputs

)
−
(
Σt
t−1outputs

)
−
(
inventoryt−1 − inventoryt

)
(1)



MB for MSRs can be formulated using
time-differenced measured and observed
values
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MSR material balance
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MBt = ( Im,t − Im,t−1 )− ( Ic,t − Ic,t−1 )

= ( Cm,tBt − Cm,t−1Bt−1 )− ( Cc,tBt − Cc,t−1Bt−1 )

(2)

Where Im,t is the measured quantity and Ic,t is the calculated quantity,
terms C and B refer to the concentration and bulk measurement
respectively.



Bulk material balances are never zero
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Measurements are never perfect

Measurements are never perfect which lead to non-zero material balances.
Consequently, the material balance uncertainty plays an role in the ability of
techniques to detect potential material loss.



Prior work considered several different
designs
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MSR parameter summary

Parameter MSDR MOSART REBUS MSFR MCSFR

Th Pwr (MWth) 750 2400 3700 3000 6000

F Salt Comp (mol%)
(71.5-16-12-0.5)

LiF-BeF2-ThF4-UF4
(69.72-27.1.28)

LiF-BeF2-ThF4-TRUF3

(55-45)
(0.711% 235U + 16.7 at.% TRU)Cl3

NaCl +

(77.5-19.9-2.6)
LiF-ThF4-

233UF4
(60-36-4)

NaCl-UCL3-
239PuCl3

F Feed 3.08%235U 0.711%235U + TRU 0.711%235U 233U + 232Th 0.711% 235U + Pu

F Mass (MTIHM) 121.0 28.83507 114.62944 43.33535 67.78803

B Salt Comp - - -
(77.5-22.5)
LiF-ThF4

(60-40)
NaCl-UCl3

B Feed - - - 232Th 0.711% 235U

B Mass (MTIHM) - - - 17.57098 133.76272

Fuel Cycle U/Pu U/Pu+Th/U U/Pu Th/U U/Pu

Spectrum Thermal Fast Fast Fast Fast



Large inventories create material
accountancy challenges
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Could process signals be used to indicate
signs of material loss?
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• Signals such as temperature, pressure, and flow must be
monitored for operational purposes

• Material loss will likely have some impact on neutronics, and
consequently, thermohydraulic parameters

• Build upon existing work considering novel strategies for improved
MC&A of MSRs

• Soares et al. (Impact of nuclear data uncertainty on detection
probability)

• Dunkle et al. (Feasibility for monitoring off-gas streams for material
loss detection)

• Kovacevic et al. (Potential gamma emitters that could indicate
material loss)

• Wheeler et al. (Sinusoidal reactivity insertion to monitor frequency
response)



Using existing tools to improve analysis
pipeline: MSDR dynamic model
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• Process model is required to
analyze process monitoring
signals under material loss
conditions

• Existing first order MSDR
dynamic system based in
MATLAB Simulink utilized
(Pathirana et al. 2022)

• Transient progression
• Depletion dependency
• Steam generator modeled
• Utilizes modified point
kinetics equation



Process-based response analysis requires
several analytical steps
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Overview of scenarios for process-based
response analysis
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• Scenarios divided into
initiation time and
duration

• Later losses generally
decrease in reactivity

• Sign change in
reactivity due to
spectrum hardening

• Longer removals lead
to smaller reactivity
swings

Initiation Scenarios

Scenario Initiation (years) Duration (days) Total removal (kg) Reactivity (pcm)

1 0.10x y 8.748 -253.989

2 0.50x y 8.315 -4.937

3 x y 7.963 20.256

4 2x y 8.168 34.887

5 2.5x y 7.877 28.727

Duration Scenarios

Scenario Initiation (years) Duration (days) Total removal (kg) Reactivity (pcm)

6 x y 7.963 20.251

7 x 2y 7.950 21.324

8 x 4y 7.941 16.496

9 x 6y 8.038 10.626



Two approaches were utilized to analyze data
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Parameterized model: Long short-term memory auto encoder

• Autoencoder neural network

• Trained on 83 features from dynamic model

• Should have low error on known patterns, high error on
unknown/unseen patterns

Non-parametrized model: Matrix profile

• Time-series motif matching

• Requires no training, works on streaming data if needed

• Rare behavior should have large amounts of time between events
and low similarity



Parameterized model performs well at lower
measurement uncertainities; result of
overfitting
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Non-Parameterized offers better generalized
performance, but worse at lower
uncertanities
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Relative comparison highlights weakness of
methodology; simple model signals
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Reactor specific behavior can result in
undetectable losses
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Viability of approach is unclear; further tool
development required
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Opportunities

• Material losses do cause a reactivity swing

• Transitions from pre-loss and post-loss states are observable

• Existing signals likely monitored by operators can indicate material loss

• Temperatures, reactivity, etc.

Challenges

• Existence of sign change in reactivity insertion implies the existence of a loss with
no reactivity change

• Changes in process monitoring signals might not be unique to material loss

• Simplified model doesn’t capture normal operational variation

• How much change is expected under normal operation? Will a material loss
exceed that variation?



Currently no technique to reliably detect loss of

significant quantity in liquid-fueled MSRs with large

fissile inventory
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• SEID alone, even with conservative uncertainty estimates, is
multiple times larger than a significant quantity

• Few fission product indicators are available to detect large losses
of material

• This holds true even when only considering a single uncertainty
source at a time (e.g., nuclear data uncertainty or counting statistics)

• Neutronics-based techniques could be viable for relatively large
losses of material

• Other process signals (e.g., temperature and pressure) might be
viable at 1% measurement uncertainty levels

• Full study points out several limitations that would need to be
resolved before a conclusive evaluation could be undertaken

• Performance-based approach might be more effective for large,
liquid-fueled MSRs

• Consideration of radioactivity of fuel, fissile density, accessibility of
area, etc.
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