Pebble Database for PBR MC&A – NEUP

Advanced Reactor Safeguards Spring Working Group Meeting, October 31 – November 2, 2023 **Braden Goddard**

College of Engineering Mechanical and Nuclear Engineering

Project Team

Core VCU team

- Braden Goddard (PI)
- Zeyun Wu (co-PI)
- Zachary Crouch (Ph.D. student)
- Kashminder Mehta (Ph.D. student)
- Ben Impson (undergrad)

External advisory team

- Claudio Gariazzo (ANL)
- Yonggang Cui (BNL)
- Philip Gibbs (ORNL)
- Donny Hartanto (ORNL)

- Project duration: Oct. 2022 Sept. 2024
- Funding amount: \$400k

The Challenge

- Knowing the nuclear and radiological material content in used pebbles is important for:
 - Safeguards
 - Facility operations
 - -Waste management
 - Etc.
- Used pebbles are measured relatively quickly after discharge and there path through the reactor can vary between pebbles
 - Traditional LWR gamma and neutron NDA correlations may not be applicable

Project Goal

- Create a data library of used pebble NDA signatures
 - Gamma spectra (HPGe)
 - Neutron counts
- Validate data library using an independent code – INDEPTH (ORIGEN)
 - -OpenMC
- Document methodology used to create the data library – Focus is Xe-100

Previous Work

- Initial work as focused on:
 - Recruiting and training students
 - Creating pebble variations to understand modeling sensitivities
 - Reflective boundary mirror vs white
 - Homogeneous vs heterogeneous
 - Simple cubic vs face centered cubic
 - Latticed TRISO particles vs semi-random
 - Effect of clipped TRISO particles
 - Reflective boundary at pebble surface vs cube with helium

Comparison of "Random" Cases

- There are different methods to simulate the randomness seen in particle distributions
- It is believed that the method employed by OpenMC most closely matches the real distribution of particles

Model	k∞
Uniform	1.50820 ± 0.00007
URAN	1.50929 ± 0.00006
Semi-Random	1.51203 ± 0.00008
Random-OpenMC	1.51071 ± 0.00012

Conclusions from INMM 2023 Presentation

- All TRISO fuel is the same
 - Excluding enrichment
- Fuel is manufactured as specified in the nuclear industry
- 1% perturbations will have an ~300 pcm or less change in fresh fuel
- Changes that effect moderation appear to have large impacts on nuclear material content in spent fuel
 More analyses is needed
- TRISO particle distribution is difficult to model perfectly

Code Validation MCNP-OpenMC

Single fresh pebble at room temperature (293.62 K)

Pebble Model		k _∞ (White B.C.)	k _∞ (Mirror B.C.)	Diff. in k_{∞}
Uniform	MCNP	1.60743 ± 0.00008	1.61471 ± 0.00004	-0.00728
	OpenMC	1.60818 ± 0.00011	1.61560 ± 0.00012	-0.00742
	dev. in k_{∞}	-67×10^{-5}	-89×10^{-5}	
URAN	MCNP	1.60830 ± 0.00005	1.61563 ± 0.00006	-0.00733
Semi- Random		1.61017 ± 0.00007	1.61723 ± 0.00006	-0.00706
Random- OpenMC	OpenMC	1.61025 ± 0.00011	1.61739 ± 0.00012	-0.00714
Compare to URAN	dev. in $k_{\scriptscriptstyle \infty}$	187×10^{-5}	176×10^{-5}	
Compare to Semi- Random	dev. in k_{∞}	8×10^{-5}	16×10^{-5}	

Single fresh pebble at hot temperature (1200 K)

Pebble Model		k _∞ (White B.C.)	k _∞ (Mirror B.C.)	Diff. in k_{∞}
Uniform	MCNP	1.50820 ± 0.00007	1.51774 ± 0.00007	-0.00954
	OpenMC	1.50789 ± 0.00012	1.51757 ± 0.00012	-0.00968
	dev. in $k_{\scriptscriptstyle \infty}$	31×10^{-5}	17×10^{-5}	
URAN	MCNP	1.50929 ± 0.00006	1.51866 ± 0.00004	-0.00937
Semi- Random		1.51203 ± 0.00008	1.52111 ± 0.00006	-0.00908
Random- OpenMC	OpenMC	1.51071 ± 0.00012	1.51980 ± 0.00012	-0.00909
Compare to URAN	dev. in k_{∞}	142×10^{-5}	114×10^{-5}	
Compare to Semi- Random	dev. in k_{∞}	-132 × 10 ⁻⁵	-131 × 10 ⁻⁵	

Burnup: k_{∞}

Burnup: OpenMC k_{∞} mirror B.C. model

Burnup: MCNP k_{∞} white B.C. model

Burnup: Plutonium Isotopic Content

Burnup: OpenMC Pu content mirror B.C. model

Burnup: MCNP Pu content white B.C. URAN model

INDEPTH Validation

- Feed MCNP nuclide data into INDEPTH
 - INDEPTH library needed slight modification
 - Thanks Brandon Grogan for help
- Xe-100 reactor ORIGEN model is needed
 - Thanks Jonathan Wing for sharing your model!
- Will compare to AGR, MAGNOX, and PWR fuel models
 - INDEPTH results should not match for these models

OpenMC Preliminary Full Reactor Model

Acknowledgements

- Savannah Fitzwater and Ben Cipiti
 - Program managers
- Claudio Gariazzo, Yonggang Cui, Philip Gibbs, Donny Hartanto
 - External advisors
- Brandon Grogan, Jonathan Wing – INDEPTH and SCALE assistance
- Everyone in this "room" for the constructive feedback on this work
- This work is performed with the support of U.S. Department of Energy's Nuclear Energy University Program (NEUP) with the Award No. DE-NE0009304

Pebble Database for PBR MC&A – NEUP

Advanced Reactor Safeguards Spring Working Group Meeting, October 31 – November 2, 2023 **Braden Goddard**

College of Engineering Mechanical and Nuclear Engineering