ADVANCED REACTOR SAFEGUARDS TRISO NDA Measurements for Burnup

Mark Croce, Daniel McNeel, Katherine Schreiber, Rico Schoenemann¹ Jianwei Hu, Callie Goetz, Jason Harp, Wade Ivey, Tammy Keever, Lisa Duncan, Haley Wightman² Daniel Becker³ Ammon Williams, Brian Bucher, Edward Seabury, Maegan Coleman, Brian Storms⁴

> ¹Los Alamos National Laboratory ²Oak Ridge National Laboratory ³University of Colorado ⁴Idaho National Laboratory

PRESENTED BY

Ŷ

=____=

Mark Croce, Los Alamos National Laboratory

October 2023 LA-UR-23-32047

- Enable cost-effective safeguards for advanced reactors by understanding exactly how nondestructive analyses can be used
- Directly measure NDA uncertainty to provide a comprehensive set of validated measurement capabilities for safeguards models
- Current focus is burnup measurement of TRISO fuels for pebble bed reactors to support:
 - On-line burnup measurement system
 - Safeguards of used fuel

What signatures of burnup can be observed in TRISO fuels? Measure them!

- Measurements of dissolved AGR2 and AGR5/6/7 TRISO fuels completed at ORNL Analytical Laboratory
- Measurements of AGR2 and AGR5/6/7 intact compacts and subsamples completed at ORNL Irradiated Fuel Examination Laboratory
- Planning completed for additional TRISO particle measurements at INL Analytical Laboratory

ORNL Hot Cells

POULANCED REACTOR

Solid TRISO Fuels

ID	Burnup	Notes
AGR5/6/7 Compact 223	14.33%	Intact compact
AGR2 Compact 211	12.5%	Intact compact
AGR2 Compact 542	12.03%	~90% of compact
AGR2 subsamples	7.3-12.7%	11 samples with ~150-235 particles
AGR5/6/7 subsamples	9.3-14.3%	4 samples with ~235 particles

AGR2 Irradiations: June 2010 to October 2013 AGR5/6/7 Irradiations: February 2018 to July 2020

Dissolved TRISO Fuels

ID	Burnup	Notes
AGR2 Compact 642	9.26%	3 samples prepared for burnup DA
AGR5/6/7 Compact 232	14.36%	Fuel holder leach solution
AGR5/6/7 Compact 232	14.36%	Deconsolidation acid

AGR2 Irradiations: June 2010 to October 2013 AGR5/6/7 Irradiations: February 2018 to July 2020

Cs-134/137 Ratios with HPGe

possible issues: changing background, may need correction for irradiation timeline

Next Steps

- INL Measurement Campaign
 - Emphasis is on freshly irradiated TRISO fuels
 - Use HPGe and HERMES-400 microcalorimeter spectrometers
- ORNL Measurement Campaign
 - Additional solid-form subsamples of AGR2 and AGR5/6/7 measured in lowerbackground location for better quantitative analysis
- Dedicated Irradiation Planning
 - Priority is measuring effect of extremely short-lived fission products
 - Expect much lower burnup than from AGR irradiations