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Motivations of the Work &@

O
Burnup measurement is the key to deciding if the Pebble bed reactor scheme
pebble should be discharged or recycled during the t/newmemebmes |
operation of a PBR reactor P v

Burnup measurement faces two challenges:

 High throughput

 High accuracy

Objectives

e Create and validate a workflow for modeling and simulation of
both burnup and gamma-ray detection

* Build ML models >Z H\
reinforced
e Study performance of ML models concrete spent fuel pebbles

heated fluid
to turbine

-

cold fluid
from turbine

[~ pump

Pebble-bed reactor - Wikipedia
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FY23 Technical Tasks Q@@ 8)

* Modeling and simulation

e Add collimator to the workflow to reduce the flux

e Validation of the simulation workflow
 Develop full PBMR model
Automate result generation

 Validate the Serpent simulation results with the ones generated in Oak Ridge Isotope
GENeration (ORIGEN)

* Explore the explainability of the ML model
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Modeling and Simulation
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Collimation Analysis

* Ejected pebbles from the core are highly radioactive,
so collimator is needed to reduce the flux seen by
the detector.

* A few options (MCNP, Geant4, Serpent) were
considered based on ease of implementation,
efficiency of simulation and accuracy.

* We decided to model the collimator directly into the
source model in Serpent, eliminating the need to
validate data translation to/from an external code.
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Collimation Analysis (Cont’d)
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Full Core Model for Burnup Validation Q@@ 8)

* Compared to the lattice model, a full-
core model allows

* More realistic flux and power distribution,
hence resulting in more accurate burnup on
a pebble per its location.

Top view Zoomed In Quarter Core

* Full core modeling generates a potential to
describe the effects of pebble flow path on
the overall burnup

* More accurate simulation to validate or
compare to experimental data

A
Cut through Side View Pebble in Core

* The effect of control and burnup poisons
are better described in a full core model

O Full core model of a PBMR design
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Simulation Results — (isotope verification) o )6
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Simulation Results — (emission verification)

Gamma emission (g/s)

Neutron emission (n/s)
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Explainability of ML Model
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Machine Learning for Burnup Measurement O 8)

L. Mean Absolute Percent Error (MAPE) Mean Absolute Percent Error (MAPE)
o We have demonstrated promISIng results . (20-second acquisition time) . 17llﬁgl—houracquisition time)
with our ML models '
« Significantly outperforming linear regression '
m et h Od 40.000 12.000
* Specifically, high performance at short cooling =«
* Results accepted for publication
C. X. Soto et al. "A Better Method to Calculate Fuel Burnup in g —
Pebble Bed Reactors Using Machine Learning," Nuclear b 0.000
Technology, DOI 10.1080/00295450.2023.2200573 S e g

 However, Neural Network-based ML models are inherently opaque
* Learned feature representations are not easily interpretable

* Therefore, confidence and downstream impact of this work may be limited in its present
state

* Also, short-cooling performance merits deeper investigation
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Approaches to ML Explainability/Interpretation (= @ 8)
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* Criteria of tool selection 1":
e Support the data and models +47 W
e Output explainability insights — identifying /!
simple features related to gamma spectra that ...\ o inear decision boundaries using
are most responsible for the ML predictions perturbed feature values

e Two selected tools

* LIME: Linear Interpretable Model-agnostic
Explanations Botine

 SHAP: SHapley Additive exPlanations

SHAP works by creating an ensemble of tree models based
on Shapley-value estimations for feature contributions
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An Iterative Approach to Explore Explainability Q@;@@

Sub-spectra y

Initial Spectrum Prominent

Spectra Rebinning Energy Bins
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LIME Results

e 12-hour cooling time
and 1-hour
measurement time

Stage Narrow down | Explainability
threshold

1 25% 88.74%
2 25% 78.95%
3 37.5% 96.71%

1
3000

T

©

Stage 1

Stage 2

Stage 3



LIME Results

Top 24 energies identified by our LIME-based explainability
analysis, for the and cooling condition dataset

m Energy Energy m Energy Energy
(keV) (keV) (keV) (keV)
891.153 2740.737 61.281 389.433
B 246.385 2754.297 318.921 348.753
BEN 443673 888.441 IEE 58.569 584.697
B 337.905 308.073 ETG 340.617 354.177
BE  118.233 118.233 KW, 280.953 421.977
B 278.241 2735.313 [EE 893.865 66.705
180.609 337.905 [EE 205.017  2770.569
B 286.377 58.569 BN 899.289 405.705
9 36.873 446.385 [EX] 272.817 61.281
55.857 443.673 [JIEY 888.441 351.465
896.577 2751.585 [IFE 316.209 69.417
66.705 55.857 69.417 454.521
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LIME Results

Validation of LIME-selected features with new MLP
and LR models. Arrows indicate direction of better
performance per metric: RMSE (root mean square
error), MAPE (mean absolute percent error), R?
(correlation coefficient)

1 IRmSE IIMAPE(%) [TR2 |

Linear regression on top-N LIME
features (all features ~3 keV wide)

L IRMmSE (I MAPE(%) TR

L] PZAEIN 0.528

0.698

3.424
6.113

5.16
6.81
20.99
58.74

0.9996
0.9994
0.9848
0.9533

Original 0.66 2.04 0.9995
spectra

- Stage1 0.37 1.61 0.9998
features

- Stage 2 0.27 1.33 0.9999
features

- Stage 3 0.28 1.07 0.9999
features

Original 0.74 7.93 0.9992

Regression EEY:leir:

- Stage 3 0.53 5.16 0.9996
features
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Next Steps Q@@ &)
* Improve burnup model towards realistic operational conditions by
varying

* Transient time
* Cooling time
* Measurement time

 Study the performance of the ML models with the new datasets

* Validate the burnup model with measured spectra as new burnup
experiments go through and gamma spectra of newly burned TRISO
particles become available
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