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Motivations of the Work

• Burnup measurement is the key to deciding if the 
pebble should be discharged or recycled during the 
operation of a PBR reactor

• Burnup measurement faces two challenges:
• High throughput
• High accuracy 

• Objectives
• Create and validate a workflow for modeling and simulation of 

both burnup and gamma-ray detection
• Build ML models
• Study performance of ML models
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Pebble-bed reactor - Wikipedia

https://en.wikipedia.org/wiki/Pebble-bed_reactor
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FY23 Technical Tasks

• Modeling and simulation

• Add collimator to the workflow to reduce the flux

• Validation of the simulation workflow
• Develop full PBMR model

• Automate result generation

• Validate the Serpent simulation results with the ones generated in Oak Ridge Isotope 
GENeration (ORIGEN) 

• Explore the explainability of the ML model
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Modeling and Simulation
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Modeling and Simulation Workflow
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Include burnup model 
and collimation
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Collimation Analysis

• Ejected pebbles from the core are highly radioactive, 

so collimator is needed to reduce the flux seen by 

the detector.

• A few options (MCNP, Geant4, Serpent) were 

considered based on ease of implementation, 

efficiency of simulation and accuracy.

• We decided to model the collimator directly into the 

source model in Serpent, eliminating the need to 

validate data translation to/from an external code.
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Collimation Analysis (Cont’d)

Full spectra with and without collimation Collimation effect on specific energy ranges

---- collimation
---- no collimation
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Full Core Model for Burnup Validation

• Compared to the lattice model, a full-

core model allows

• More realistic flux and power distribution, 

hence resulting in more accurate burnup on 

a pebble per its location. 

• Full core modeling generates a potential to 

describe the effects of pebble flow path on 

the overall burnup 

• More accurate simulation to validate or 

compare to experimental data

• The effect of control and burnup poisons 

are better described in a full core model

Top view

Cut through Side View

Zoomed In Quarter Core

Pebble in Core
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Full core model of a PBMR design
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Simulation Results – (isotope verification)

9

Duration (days)

M
as

s 
(g

)
o

  -  Serp
e

n
t      o

  -  O
R

IG
EN



BNL-NN-20230717-0188-00-FORE

Simulation Results – (emission verification)
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Explainability of ML Model
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Machine Learning for Burnup Measurement

• We have demonstrated promising results 
with our ML models
• Significantly outperforming linear regression 

method
• Specifically, high performance at short cooling

• Results accepted for publication
C. X. Soto et al. "A Better Method to Calculate Fuel Burnup in 
Pebble Bed Reactors Using Machine Learning," Nuclear 
Technology, DOI 10.1080/00295450.2023.2200573

• However, Neural Network-based ML models are inherently opaque
• Learned feature representations are not easily interpretable

• Therefore, confidence and downstream impact of this work may be limited in its present 
state

• Also, short-cooling performance merits deeper investigation
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Approaches to ML Explainability/Interpretation

• Criteria of tool selection
• Support the data and models

• Output explainability insights – identifying 
simple features related to gamma spectra that 
are most responsible for the ML predictions

• Two selected tools
• LIME: Linear Interpretable Model-agnostic 

Explanations

• SHAP: SHapley Additive exPlanations
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LIME works by creating linear decision boundaries using 
perturbed feature values

SHAP works by creating an ensemble of tree models based 
on Shapley-value estimations for feature contributions
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An Iterative Approach to Explore Explainability
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Initial 
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LIME Results
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• 12-hour cooling time 
and 1-hour 
measurement time

Stage Narrow down 
threshold

Explainability

1 25% 88.74%

2 25% 78.95%

3 37.5% 96.71%

Stage 1

Stage 2

Stage 3
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LIME Results
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Rank Energy 
(keV)

Energy 
(keV)

Rank Energy 
(keV)

Energy 
(keV)

1 891.153 2740.737 13 61.281 389.433

2 446.385 2754.297 14 318.921 348.753

3 443.673 888.441 15 58.569 584.697

4 337.905 308.073 16 340.617 354.177

5 118.233 118.233 17 280.953 421.977

6 278.241 2735.313 18 893.865 66.705

7 180.609 337.905 19 205.017 2770.569

8 286.377 58.569 20 899.289 405.705

9 36.873 446.385 21 272.817 61.281

10 55.857 443.673 22 888.441 351.465

11 896.577 2751.585 23 316.209 69.417

12 66.705 55.857 24 69.417 454.521

Top 24 energies identified by our LIME-based explainability 
analysis, for the 12-hour and 120-hour cooling condition dataset
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LIME Results
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⬇ RMSE ⬇ MAPE (%) ⬆ R2

MLP Original 
spectra

0.66 2.04 0.9995

Stage 1 
features

0.37 1.61 0.9998

Stage 2 
features

0.27 1.33 0.9999

Stage 3 
features

0.28 1.07 0.9999

Linear 
Regression

Original 
spectra

0.74 7.93 0.9992

Stage 3 
features

0.53 5.16 0.9996

⬇ RMSE ⬇ MAPE (%) ⬆ R2

Top-24 (all) 0.528 5.16 0.9996
Top-8 0.698 6.81 0.9994
Top-4 3.424 20.99 0.9848
Top-2 6.113 58.74 0.9533

Linear regression on top-N LIME 
features (all features ~3 keV wide)

Validation of LIME-selected features with new MLP 
and LR models. Arrows indicate direction of better 
performance per metric: RMSE (root mean square 
error), MAPE (mean absolute percent error), R2 
(correlation coefficient)
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Next Steps

• Improve burnup model towards realistic operational conditions by 
varying
• Transient time

• Cooling time

• Measurement time

• Study the performance of the ML models with the new datasets

• Validate the burnup model with measured spectra as new burnup 
experiments go through and gamma spectra of newly burned TRISO 
particles become available
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