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Insulation Challenges with Conventional Laminated Bus
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 Low PDIV on conventional laminated bus; PDIV = 5.23 kV
 Leading manufacturers recommended increasing thickness 

from 19 mm to 30 mm to reach target PDIV

 Heavy due to thick insulation and decoupling capacitors
 17.62 lb without decoupling capacitors
 25.8 lb with decoupling capacitors
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Medium voltage capacitors 3.5 kV, 60 µF, 
limit power density
Maximum differential voltage within 

PEBB is 6 kV
 ±3 kV maximum voltage across ancillary 

circuitry within PEBB
 30 kV maximum voltage to ground

Auxiliary circuits can be located far from 
power supplies leading to long HV wire 
interconnection
Fan array is fed from a 24-V-to-ground 

network 
– Maximum voltage to heatsink is 27 kV

Insulation Design Challenges
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Design Goal
E-field control
1) Inside dielectric of PCB

2) Along surface of PCB

PCB Bus Cross Section at –DC Terminal
MID

MID

MID

+DC

-DC

add additional insulation

Minimum MID-Conductor Clearance
Sweep conductor clearance

[2 … 20] mm

set insulation thickness

E-Field Intensity in Air
Sweep additional insulation thickness

[2 … 20] mil

set offset

E-Field Intensity in Solid Insulator
Sweep insulation thickness

[2 … 20] mil

Minimum Conductor Offset
Sweep offset
[+5 … -5] mm

set MID-conductor clearance

Are E-field
requirements met?

Yes

Finish

No

Clearance
Insulation Thickness

Air Solder mask Conductor Core Prepreg

Offset

MID (0 V)

+DC (+3.5 kV)

Air

MID (0 V)

MID (0 V)
-DC (-3.5 kV)

Method for Electric Field Evaluation
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Bus Cross Section at –DC Terminal
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Technique for Electric Field Management within PCB
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Configuration 2: Additional insulation 
between outer MID & +/- DC

Configuration 1: Additional insulation 
between all layers

Controlling Surface Electric Field in Air: Techniques
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Configuration 3: Additional outer cores 
between outer MIDs and air

SurfaceElectric  Field Intensity
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+DC

-DC

Center for Power Electronics Systems 8



Configuration 3: Additional outer core – 20 mil each

Controlling Surface Electric Field in Air: Findings
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Configuration 1: Additional insulation between each
                          internal layer – 10 mil each

Configuration 2: Additional insulation between two
                          external MID layers – 20 mil each
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 24 kV, 9-Level PCB-bus
 3 kV between adjacent layers
 “Shield Pads” implemented for surface field control

Pad Shields & E-Field Control In Air L1,18 – Component interconnection pads 

Dielectric
Air

L2,17 – Internal E-field shielding 

Offset

Distance between L1 & Shield Pad, d (mm)

Maximum E-field Intensity on Surface Pad
Maximum E-Field Intensity on Shield Pad

0.1271.1272.1273.1274.1275.127

Peak Electric Field Intensity vs Shield Pad Vertical Spacing From Surface Pad
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24 kV SiC-based Modular Multilevel Converter

Vph

Vdc

24 kV

dc-dc / dc-ac Rating = 6 kV, 84 A rms, fsw 10 kHz
PDIV = 32 kV
Power density = 12 MW/m3

η = 99.4 %August 3, 2023 Center for Power Electronics Systems 11



0 V

0 V

0 V

+3 kV

-3 kV

Discrete MVDC Bus

 Wire routing throughout converter can be eliminated by integrating low 
voltage power distribution into 6 kV PCB bus.
 All ancillary circuits are supplied from 48 V WPT.
 Additional bus thickness is minimal since differential voltage 

between MID layer is 48 V

 Four parallel 2 oz layers used for +DC & -DC layers for current carrying 
capacity

 Independent 48 V layers on top and bottom of bus
 48 V input, 48 V distribution

Integrated Auxiliary Power Distribution

August 3, 2023
CIRCUITS: Half-Bridge 500 kW, 6 kV

Discrete 
APS bus and 
power routing

Mini-UPS𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵 1 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵 2 
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SMD Auxiliary Power Terminals

0 V

0 V

0 V

+3 kV
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Discrete MVDC Bus

 Wire routing throughout converter can be eliminated by integrating low 
voltage power distribution into 6 kV PCB bus.
 All ancillary circuits are supplied from 48 V WPT.
 Additional bus thickness is minimal since differential voltage 

between MID layer is 48 V

 Four parallel 2 oz layers used for +DC & -DC layers for current carrying 
capacity

 Independent 48 V layers on top and bottom of bus
 48 V input, 48 V distribution

Integrated Auxiliary Power Distribution
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Mini-UPS𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵 1 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵 2 

48 V

MVDC Bus with
Integrated Auxiliary Power Bus

48 V

0 V

0 V

0 V

+3 kV

-3 kV

𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵 1

𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵 2
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 Omicron partial discharge measurement system for 
detecting and analyzing partial discharge events

 Canon DSLR for capturing flashover and corona on 
parts exposed to air

HV Test
Chamber

Flashover Between HV Coils

Phase Resolved Partial Discharge Pattern

Discharge Groupings

Testbed for Partial Discharge Analysis
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Simplified Bus Cross Section

+DC
-DC
MID

Connection PDIV
(kV)High Voltage Reference Floating

1 +DC -DC/MID — 6.4

2 -DC +DC/MID — 6.33

3 +DC/-DC MID — 6.48

4 +DC -DC MID 8.12

5 +DC MID -DC 6.87

6 -DC MID +DC 6.80

 Insulation between +DC, -DC, and MID tested with 60 Hz 
AC excitation

 PDIV target > 3.6 kV between Mid & ±DC with apparent 
charge < 10 pC

 PCB bus weight is 6 lb – reduced by 66%

+DC -DC MID

Bus Insulation Performance: PD Inception Voltage (PDIV)
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Cooling System Insulation Challenges

108 mm

Final Design: 30 kV PDIV

 Clearance requirement in air is increased due to non-ideal geometries within cooling system
 Sharp edges along heatsink
 Internal electronic circuitry of fan array

August 3, 2023

Peak Heatsink: 27 kV

Fan Voltage: 0 V
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Electric Field Reduction Using Corona Ring
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 Peak E-field intensity reduced by ~50 %
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E-field Reduction on Edge 1

r=1.5 mm

Fin 1 Fin 2

Peak E-field Peak E-field

r=4.5 mm

Fin 1 Fin 2 Fin 3

Fin Width: 𝑤𝑤 =1.5 mm; Fin Spacing: 𝐵𝐵=1.5 mm

Design Guide: 
If 𝑤𝑤 = 𝐵𝐵 

𝑟𝑟 ≠ 𝑛𝑛𝑤𝑤

If 𝑤𝑤 ≠ 𝐵𝐵
for 𝑟𝑟 > 𝑤𝑤
𝑟𝑟 ≠ 𝑛𝑛(𝑤𝑤 + 𝐵𝐵)

Global Maximum Electric Field Intensity
r=1.5 mm

r=3 mm
r=4.5 mm
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Fin “Knife edge” must be avoided 
to prevent E-field intensification. 
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High Voltage Heatsink Validation

𝒓𝒓 = 𝟎𝟎 𝒎𝒎𝒎𝒎 𝒓𝒓 = 𝟓𝟓 𝒎𝒎𝒎𝒎

𝒓𝒓 = 𝟔𝟔 𝒎𝒎𝒎𝒎 𝒓𝒓 = 𝟏𝟏𝟎𝟎.𝟓𝟓 𝒎𝒎𝒎𝒎

Design Guide: 
If 𝑤𝑤 = 𝐵𝐵 

𝑟𝑟 ≠ 𝑛𝑛𝐵𝐵

If 𝑤𝑤 ≠ 𝐵𝐵
for 𝑟𝑟 > 𝑤𝑤
𝑟𝑟 ≠ 𝑛𝑛(𝑤𝑤 + 𝐵𝐵)
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Heatsink Coupon PDIV

10 mm
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Heat Sink-to-Fan Insulation Testing

 Fan clearance reduced to 25 mm
 Spacer with height of 25 mm was used to set 

spacing between corona ring and top of fans
 PDIV = 36.3 kV
 Flashover Voltage: 49.2 kV 

25 mm

Cooling Fans (GND)

Corona Ring & Heatsink (HV)

36.3 kV

1 pC

10 pC

100 pC

1 nC

Discharge Groupings

PRPD: Heatsink-to-Fans
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Medium Voltage Converters at CPES Utilizing PCB-Based Bus

August 3, 2023

ARAP-E: CIRCUITS ONR: PEBB 6000 AMMTO (AMO)

Topology Half-Bridge

Voltage 6 kV

Current 83 A

Power 500 kW

Frequency 10 kHz

Efficiency 99.4%

Power Density 12 MW/m3 (197 w/in3)

Topology H-Bridge

Voltage 6 kV

Current 176 A

Power 1 MW

Frequency 10 kHz

Efficiency 99.4%

Power Density 20 MW/m3 (327 w/in3)

Topology 5-Level Flying Capacitor

Voltage 22 kV

Current 15 A

Power 333 kW

Frequency 5 k

Efficiency TBD

Power Density 2.8 MW/m3 (46 w/in3)

PCB Bus

PCB Bus
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 Implementing geometric techniques for E-field control enables use of MV PCB-based 
components.

MV PCB-based DC bus with integrated low voltage network simplified insulation system 
of PEBB structure

PCB bus was designed to successfully reach target PDIV of 8.12 kV with a weight 
reduction of 66%

PCB-based 3 kV, 44 µF capacitor daughtercards with integrated balancing resistors 
eliminated the need for MV can-type capacitors

The use of a corona ring and rounded heat sink reduced distance between fan array and 
heatsink by 75%

Power density increased by 48%

Concluding Remarks
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Thanks!
Please contact me anytime at joshstew@vt.edu
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