

The Bradley Department of Electrical and Computer Engineering College of Engineering Virginia Tech, Blacksburg, Virginia, USA

"Development of the Medium Voltage PEBBs Using Gen3 10 kV SiC MOSFET Modules"

Medium Voltage PCB-based Bus Design and Insulation Coordination for Power Electronics Building Blocks

Presented by: Joshua Stewart

Principal Investigators: Rolando Burgos, Dushan Boroyevich

Sandia National Laboratories Power Electronics and Energy Conversion Workshop 2023

August 3, 2022

Outline

Background

- Design Method for Medium Voltage PCB-based Components
- Medium Voltage Cooling System Design
- Summary & Conclusions

Insulation Challenges with Conventional Laminated Bus

- Low PDIV on conventional laminated bus; PDIV = 5.23 kV
 - Leading manufacturers recommended increasing thickness from 19 mm to 30 mm to reach target PDIV
- Heavy due to thick insulation and decoupling capacitors
 - 17.62 lb without decoupling capacitors
 - 25.8 lb with decoupling capacitors

Insulation Design Challenges

- Medium voltage capacitors 3.5 kV, 60 µF, limit power density
- Maximum differential voltage within PEBB is 6 kV
 - ±3 kV maximum voltage across ancillary circuitry within PEBB
 - 30 kV maximum voltage to ground
- Auxiliary circuits can be located far from power supplies leading to long HV wire interconnection
- Fan array is fed from a 24-V-to-ground network

August 3, 2023

Maximum voltage to heatsink is 27 kV

Outline

Background

Design Method for Medium Voltage PCB-based Components

- Medium Voltage Cooling System Design
- Summary & Conclusions

Method for Electric Field Evaluation

PCB Bus Cross Section at –DC Terminal

MID

+DC

MID

-DC

E-field control

CPES August 3, 2023

1) Inside dielectric of PCB

2) Along surface of PCB

Technique for Electric Field Management within PCB

Peak Electric Field Intensity Near Conductor Triple Point

0

1

0.6

0.4

0.2

2 mm

Controlling Surface Electric Field in Air: Techniques

CPES August 3, 2023

Controlling Surface Electric Field in Air: Findings

Configuration 1: Additional insulation between each internal layer – 10 mil each

Configuration 2: Additional insulation between two external MID layers – 20 mil each

Configuration 3: Additional outer core – 20 mil each

Green: Region within FR4

August 3, 2023

White: E-field intensity >2 kV/mm

Center for Power Electronics Systems

Pad Shields & E-Field Control In Air L1,18 – Component interconnection pads

24 kV, 9-Level PCB-bus

August 3, 2023

- 3 kV between adjacent layers
- "Shield Pads" implemented for surface field control

24 kV SiC-based Modular Multilevel Converter

Rating = 6 kV, 84 A rms, f_{sw} 10 kHz PDIV = 32 kV Power density = 12 MW/m³ η = 99.4 %

Integrated Auxiliary Power Distribution⁴

- Wire routing throughout converter can be eliminated by integrating low voltage power distribution into 6 kV PCB bus.
 - All ancillary circuits are supplied from 48 V WPT.
 - Additional bus thickness is minimal since differential voltage between MID layer is 48 V
- Four parallel 2 oz layers used for +DC & -DC layers for current carrying capacity
- Independent 48 V layers on top and bottom of bus
 - 48 V input, 48 V distribution

Integrated Auxiliary Power Distribution ⁴

- Wire routing throughout converter can be eliminated by integrating low voltage power distribution into 6 kV PCB bus.
 - All ancillary circuits are supplied from 48 V WPT.
 - Additional bus thickness is minimal since differential voltage between MID layer is 48 V
- Four parallel 2 oz layers used for +DC & -DC layers for current carrying capacity
- Independent 48 V layers on top and bottom of bus
 - 48 V input, 48 V distribution

MVDC Bus with Integrated Auxiliary Power Bus

Testbed for Partial Discharge Analysis

- Omicron partial discharge measurement system for detecting and analyzing partial discharge events
- Canon DSLR for capturing flashover and corona on parts exposed to air

Bus Insulation Performance: PD Inception Voltage (PDIV)

- Insulation between +DC, -DC, and MID tested with 60 Hz AC excitation
- PDIV target > 3.6 kV between Mid & ±DC with apparent charge < 10 pC
- PCB bus weight is 6 lb reduced by 66%

ES August 3, 2023

Connection				
	High Voltage	Reference	Floating	(kV)
1	+DC	-DC/MID	—	6.4
2	-DC	+DC/MID	—	6.33
3	+DC/-DC	MID	—	6.48
4	+DC	-DC	MID	8.12
5	+DC	MID	-DC	6.87
6	-DC	MID	+DC	6.80

Outline

Background

- Design Method for Medium Voltage PCB-based Components
- Medium Voltage Cooling System Design
- Summary & Conclusions

Cooling System Insulation Challenges

- Clearance requirement in air is increased due to non-ideal geometries within cooling system
 - Sharp edges along heatsink

August 3, 2023

Internal electronic circuitry of fan array

Electric Field Reduction Using Corona Ring

CPES August 3, 2023

Center for Power Electronics Systems

E-field Reduction on Edge 1

CPES August 3, 2023

High Voltage Heatsink Validation

Global Maximum Electric Field Intensity

r = 10.5 mm

r = 5 mm

Heat Sink-to-Fan Insulation Testing

- Fan clearance reduced to 25 mm
- Spacer with height of 25 mm was used to set spacing between corona ring and top of fans
- PDIV = 36.3 kV

ES August 3, 2023

Flashover Voltage: 49.2 kV

Outline

Background

- Design Method for Medium Voltage PCB-based Components
- Medium Voltage Cooling System Design
- Summary & Conclusions

Medium Voltage Converters at CPES Utilizing PCB-Based Bus

	Topology	Half-Bridge
	Voltage	6 kV
	Current	83 A
	Power	500 kW
	Frequency	10 kHz
	Efficiency	99.4%
	Power Density	12 MW/m ³ (197 w/in ³)
-		

CPES August 3, 2023

Topology	H-Bridge
Voltage	6 kV
Current	176 A
Power	1 MW
Frequency	10 kHz
Efficiency	99.4%
Power Density	20 MW/m ³ (327 w/in ³)

Topology	5-Level Flying Capacitor
Voltage	22 kV
Current	15 A
Power	333 kW
Frequency	5 k
Efficiency	TBD
Power Density	2.8 MW/m ³ (46 w/in ³)

Center for Power Electronics Systems

Concluding Remarks

- Implementing geometric techniques for E-field control enables use of MV PCB-based components.
- MV PCB-based DC bus with integrated low voltage network simplified insulation system of PEBB structure
- PCB bus was designed to successfully reach target PDIV of 8.12 kV with a weight reduction of 66%
- PCB-based 3 kV, 44 µF capacitor daughtercards with integrated balancing resistors eliminated the need for MV can-type capacitors
- The use of a corona ring and rounded heat sink reduced distance between fan array and heatsink by 75%
- Power density increased by 48%

Thanks!

Please contact me anytime at joshstew@vt.edu

This research was supported in part by the U.S. Office of Naval Research under award number N00014-21-1-2126. This research was also supported in part by ARPA-E award 1727-1519.

