

Packaging and Integration Design

for

High-Voltage WBG Modules

Presented By: Dr. Fang Luo Spellman High Voltage Power Electronics Lab

Stony Brook University

2023 Power Electronics and Energy Conversion Workshop Aug 3,2023

Stony Brook University Spellman HV Power Electronics Lab

Power Module Packaging

Microgrid PHIL Platform with Hybrid Energy Storages

Realtime Digital Twin for Prognostic Diagnostic and Lifetime Managment

High Performance Power Converters

20 kW Cryogenic High High Density Grid Density Motor Drive Tied Solar Converter (GaN) (SiC)

DARPA

Sponsors:

FAR

BEYOND

Hesse

MECHATRONICS

Modular Grid-tied Converter for Grid Control (SiC)

EMI and Reflected Wave in Flying Microgrid/ Active Filtering

Spellman

High Attitude Partial Discharge Testing and Modeling Raytheon Technologies

Spellman High Voltage Power Electronics Lab

U.S. DEPARTMENT OF

Stony Brook University Recent Module Development in the Lab

FAR BEYOND

Stony Brook University 1.2 kV/ 300A 3L-TNPC H² Module

Stony Brook University 1.2 kV/ 150A 3L-TNPC Low EMI Module

 $\mathbf{Z}_{\mathrm{Lisn}}$

Z_{List}

DCM

Z_{Lisn}

ZList

 $\mathbf{Z}_{\mathrm{Lisn}}$

Test setup: Measurement of CM EMITime-domain resulSpellmanHigh Voltage Power Electronics Lab

CM Equivalent for stacked DBC module

CM Equivalent for single DBC - module

Z_{lisn} /2

 $C_5 + C_1 + C_2$

Z_{lisn} /2

C5

 $C_{3} + C_{8}$

Stony Brook University Co-optimized Thermal Solution for Less-EMI

Stony Brook University Solder-less 3D Integrated 1.2 kV/200A SiC Module

Use of Fuzz Button to establish pressure contact from the topside of the die

FAR

BEYOND

Stony Brook University Si IGBT + SiC MOSFET Hybrid Switch Module

Spellman High Voltage Power Electronics Lab

BEYOND

Stony Brook University Metal encapsulated TPG Baseplate

Spellman High Voltage Power Electronics Lab

Custom Sample

Stony Brook University 3.3 kV SiC Phase-leg Module

Exploded view (Housing is removed)
FAR
BEYOND
Spellman High Voltage Power Electronics Lab

E=0.95 RT=24.4%

* Stony Brook University

Stack-DBC 15kV SiC Module

Module Cross-sections with busbar-like power terminals

Module Cross-sections with power terminal blocks

Housing Materials

ABS

1.

- Dielectric Strength: 15-34 kV/mm [1]
- CTI Group: II

2. PTFE

- Dielectric Strength: 17-24 kV/mm [1]
- CTI Group: I

BEYOND

Insulation Testing

Um Highest recurring peak voltage across the relevant insulation voltage

FAR BEYOND

Stony Brook University

Stony Brook University PCB Under DC Excitation at Different Pressure

✓ Square Pad ✓ Trace Corner

Maximum creepage is ~2 mm

PDIV: round pad > square pad > trace corner

PDIV linearly increases with creepage at the same pressure

The creepage range is not wide enough to see the saturation phenomenon, but the PDIV of round pad with 2 mm creepage is ~7500 V under DC voltage

Bpd $V_{\rm b} =$ $\frac{\ln Apd - \ln \left[\ln (1 + 1/\gamma_{se}) \right]}{\ln Mpd}$

Stony Brook University HV PWM Waveform Testing on Power Module

×107

0.8

0.6

0.4

0.2

Stony Brook University Conclusion and Discussion

- Co-design and co-optimization efforts are required to achieve overall module performance balancing
- Layout optimization is needed for both thermal decoupling as well as switching performance improvement
- EM design and noise mitigation control is critical for HV module design, module parasitics can be used for dV/dt control.
- E-field grading and active dV/dt control are also important while worth more effort

FAR BEYONI