

Exceptional service in the national interest

2.5D HI Packaging of the Power Converter using TSV interposer.

Helen Chung, Andrew Ian Young, Brianna Klein, Matt McDonough, Jason Neely.

Power Electronics & Energy Conversion Workshop August 2nd – 3rd, 2023 R&A # 1717169

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Purpose and Motivation:

2.5D Integration Fabrication Techniques for a Modular Radiation Resilient Platform

The **<u>2.5D Program</u>** will develop SNL's capability for 2.5D and HI Integration, for flexibility and adaptability in design/manufacturing.

NV memory PPGA Radhard Micro MIM TSVs Ceramic Substrate **Heterogenous Integration (HI)** refers to the integration of separately manufactured components into a higher level assembly that provides enhanced functionality and improved characteristics (e.g. flexibility).

G

2.5D Heterogeneous Integration Packaging of

Radiation Resilient Power Converters

Power Converter GEN 1

26.7mm

66% Areal reduction

13.4mm

G

- PCB board
- Components Surface mounted
- Integrated circuits and Power devices wire-bonded

2.5D Heterogeneous Integration with a TSV Interposer

Power Converter GEN 2

- Smaller foot print (66% areal reduction) \rightarrow high power density
- Ease of assemble & part count reduction
- I/O from the bottom of TSV interposer → Lower parasitic inductance versus wire bonds, and potentially higher speed.

ħ

Flip chip Standard Layout

Flip Chip Layout

-3

-2

-1

10

10

1

2

3

0

 $V_{G}(V)$

- Observed increased drain current after flip- chip
- Possibly due to increased number of contact points to chip
- Reduced parasitic
 resistance

Basic Idea: Instead of Woven Glass Fiber Mat/Epoxy, use Si as the Rigid Core and Embed in Epoxy

Si Core Value

1) Stiffer

2) Homogenous

3) Creep and Plastic Deformation Free – Fully Elastic

4) Dimensionally Stable

5) Heat Conductive

6) CTE matched with Si die

Si Core Substrates offer Stiffer Core/die CTE matched/ Heat Conductive/ High Via density/ High Density build-up

Ē

Si Core vs. Reinforced Epoxy Core on Stiffness

System Performance Drives Need for 3D Dual Sided Chips

APPLIED MATERIALS.

Si-cored Substrate Process Flow: 2 simple steps added to Laminate Flow (major steps only)

B

Key Technology

Through Si core/Epoxy Via

Through Glass Fiber/Epoxy Via

Enabling Unit Technology is the Through Core Via with Epoxy Lining Formation – Using Mature Metallization process

:2.5D HI TSV Interposer fabrication

Power converter: TSV interposer design

TSV 50um dia. 100um spacing, TSV height 180um. 40um line, 50um spacing.

Ē

Sandia Substrate Layout on Full Wafer

TSV interposer microstructure analysis

Via-in-via | Cross-sectional view

TSV interposer microstructure analysis

Ē

X-SEM of M1/M2/TSV/M3/M4 (more measurement data will be delievered by 5/26/23)

Solder Mask | SNL-02

Front side

Backside

Resistance of M2/M3 Applied Materials PCM | SNL-02

M2 Daisy-chain PCM Pattern

M3 Daisy-chain PCM Pattern

[■] Isolated PTN ■ Through TSV = TSV + isolated PTN + TSV

Si Core Substrates with TSV : Reliability test

			Reliabi	lity Results of TSV C	hains		olied 20	C2 Build		
	Outer TSV	Inner TSV			Outer TSV	Inner TSV			Outer TSV	Inner TSV
Initial	1.41	1.56		MSL3 Pre-Condition: Bake, @125°C for min. 24 hours Soak, @30°C, 60%RH for 192 hours x3 Reflow, @260°C	1.4	1.55		After 1000 cycles -55°C/125°C	1.4	1.6
	1.38	1.53			1.37	1.53			1.4	1.5
	1.40	1.55			1.4	1.54			1.4	1.5
	1.39	1.53			1.38	1.51			1.4	1.5
	1.44	1.59			1.43	1.58			1.4	1.6
	1.51	1.66			1.5	1.65			1.5	1.7
	1.49	1.67			1.48	1.66			1.5	1.7
	1.48	1.64			1.46	1.63			1.5	1.6
	1.50	1.65			1.49	1.64			1.5	1.6
	1.48	1.60			1.46	1.59			1.5	1.6
	1.43	1.54			1.42	1.54			1.4	1.5
	1.54	1.67			1.49	1.65			1.5	1.7
	1.47	1.60			1.46	1.59			1.5	1.6
	1.43	1.59			1.42	1.56			1.4	1.6
	1.50	1.64			1.49	1.63			1.5	1.6
	1.55	1.71			1.54	1.7			1.6	1.7
	1.50	1.65			1.48	1.64			1.5	1.6
	1.52	1.67			1.51	1.66			1.5	1.7
	1.49	1.63			1.48	1.62			1.5	1.6
	1.43	1.56			1.42	1.55			1.4	1.6
	1.43	1.59			1.42	1.57			1.4	1.6
	1.41	1.59			1.41	1.57			1.4	1.6
	1.42	1.58			1.41	1.57			1.4	1.6
-	1.40	1.55			1.4	1.56			1.4	1.6
	Both outer and inner TSV chains showed 100% yield after MSL3 and TC1000.									

Si Core Substrates with TSV: Heat dissipation

Dual-sided cooling allows up to 1.8x higher power output

Si Core Substrates with TSV: Heat dissipation

