Integrated Liquid Metal Based Cooling – An Ultimate Cooling Strategy for Electronics

Dr. Jin Wang

⊣Снрре

Professor, IEEE Fellow Center for High Performance Power Electronics <u>wang.1248@osu.edu</u>

Examples of Past Medium Voltage Projects at OSU

2014-2015

Power over fiber base gate drive for 15-kV SiC MOSFET

- Ultra-high isolation capability
- Elimination of cross talks among gate drives and control circuits at high dv/dt

- First Place Award at the IEEE Student Demonstration Competition of ECCE2015
- Patent granted

2016-2021

7-kV 1-MVA Modular Multilevel Converter for Industrial Motor Drives

- Based on 1.7-kV SiC power modules
- Peak efficiency: 99.3%
- 3 times of loss reduction
- 4 times power density improvement

https://youtu.be/Jz3lkd734Pc

The first SiC based medium voltage Mega-watt industry motor drive product

Examples of Past Medium Voltage Projects at OSU

2019-2023

20-kV T-Type Modular DC Circuit Breaker (T-Breaker) for Future DC Networks

- A 20-kV solid state circuit breaker with 500 A breaking capability
- 60.2 MW/m³ active power density
- 99.977 % measured efficiency
- Unmatched ancillary functions
- High immunity towards control signal misalignments

The validation of the T-Breaker topology at 1-kV 5000-A in the early stage of the project has led to a new project for microgrids on the lunar surface.

2017-2023

2-kV 1-MVA Integrated Modular Motor Drive for Turbo Electric Aircraft

- Modular structure for high fault tolerance and voltage stress reduction
- Vol. Power Density : 13.5 kW/L
- Mass. Power Density: 9.0 kW/kg
- A half-day workshop is planned on Sept. 6th

Tests were concluded successfully at NASA's NEAT facility on June 30^{th,} 2023

CHANGING WHAT'S POSSIBLE

Breaking a 500-A fault current at 20-kV

Outline

- Introduction of Liquid Metal based Cooling
- Three types of Magnetohydrodynamic (MHD) Pumps

Gallium alloy in liquid state *

Property	Ga₆₁In₂₅Sn₁₃Zn₁	Water
Density (Kg·m ⁻³)	6370	1000
Thermal conductivity (W·m ⁻¹ ·K ⁻¹)	15	0.6
Melting point (°C)	7.6	0

- Very safe and easy to handle in university lab environment
- High cost, \$545 per kilogram when purchased in 2020**

* https://www.indium.com/products/alloys/liquid-alloys/#image-2

Magnetohydrodynamic (MHD) Pump

Lorentz force is generated inside a MHD pump with the presence of perpendicular magnetic field and current;

Vector diagram of Lorentz force

Structure of a Typical MHD Pump

Generic structure of liquid metal-based cooling with a MHD pump

CENTER FOR HIGH PERFORMANCE POWER ELECTRONICS

Permanent Magnet MHD Pump

Liquid metal cooling loop with PM MHD pump

- Less numbers of rotatory components in the cooling loop.
- Low acoustic noise.
- Excellent cooling capability with ultra-low power loss.

Prototypes for Evaluation

PM MHD based cooling

Water-based cooling

Parameter	Liquid Metal	Water
Converter Output Power	10.5 kW	
Estimated device T _J	54.0 °C	59.0 °C
Coolant flow rate	0.2 - 0.5 L/min	4.8 L/min
Measured P _{Pump} (W)	less than 0.1 W	8 W

Both prototypes share the same cold plate, radiator, and a 3-phase converter as the heat source.

Converter (heat source) operation waveforms at 15 kHz f_{sw}

Inductor Integrated MHD Pump (i²MHD)

- Inductors are essential components of many power electronics circuits;
- By substituting the airgap of an inductor with liquid metal and connecting winding current to the liquid metal, an inductor integrated MHD pump (i²MHD) can be realized.

program.

project

sponsored by the TRAC

Design Details of i²MHD Pump

10

Cooling loop with i²MHD pump

Inductor/ i²MHD Pump operation waveforms at 20 kHz f_{sw}

- The inductor not only functions as an essential component of the dc/dc converter but also as an MHD pump;
- No auxiliary power supply and permanent magnets are needed;
- The flow rate of liquid metal will be self adaptive to the load condition because the Lorentz force is generated by the inductor magnetic field and the winding current

Hybrid Integrated MHD Pump

11

SiC Inverter with Hybrid MHD Pump

- Modular structure
- High common mode noise immunity
- Coolant system with ultra-low power consumption
- Coolant flow rate is self-adaptive to load power
- Fin-less cold plate with liquid metal as coolant
- Low acoustic noise

Measurements & Estimations	Value	
Output Power	20 kVA	
Measured T _{Case}	103.4 °C	
Estimated P _{Loss}	41 W (Per Device)	
Estimated T _J	132.1 °C (The Hottest One)	
Measured T _{Coolant}	62.4 °C	
Measured flow rate	0.55 L/min	

One Phase Leg

The top layer of the main power board serves as a shielding layer

12

Power Density: 120 kVA/L, calculated based on box volume

Operation Waveforms at 20 kVA (23.5 Arms)

- High melting temperature (7 °C for the Gallium Indium Alloy that was used in OSU prototypes)
- High material cost
- Impact of magnetic field and current (ac and dc) to the characteristics of the liquid metal including viscosity, thermal conductivity, permeability, erosion (reaction with heatsink material), etc.
- Overall cost/benefit evaluation in terms of efficiency, response to heat load fluctuations, reliability, weight and size, acoustic noise, etc.
- What would be the impact to the thermal management and power electronics in general if LK-99 if fully validated?

13

Thank you for your attention!

Questions?

Contact: Prof. Jin Wang

wang.1248@osu.edu

CENTER FOR HIGH PERFORMANCE POWER ELECTRONICS