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The Main Idea: A Circuits to Systems Approach 'TEXAS

The Un

B A dc to three-phase ac converter 4 control building block is proposed
B Each block performs string-level PV maximum power point tracking
B The ac sides of each block are cascaded to obtain transformerless utility-scale inverters
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Overall System Structure

The University of Texas at Austin

Cascaded power stages with control loops.
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1 Achanta, Johnson, Maksimovic, “A multilevel DC to three-phase AC architecture for photovoltaic power plants,” TEC, 2019.
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The Power Stage

The University of Texas at Austin

Smooth power delivery minimizes energy storage requirements
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1 Achanta, Johnson, Maksimovic, “A multilevel DC to three-phase AC architecture for photovoltaic power plants,” TEC, 2019
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The Power Stage TEXAS
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Fully PCB-based hardware build of 10 kW block below.

Primary

Auxiliary Mlcrogontroller

Secondary C

Secondary A Magnetics

Optical cables

Secondary B

1 Majmunovi¢, Mukherjee, Martin, Mallik, Dutta, Seo, Johnson, Maksimovi¢, "1 KV, 10-kW SiC-based quadruple active bridge DCX stage in a DC to three-phase AC module for
medium-voltage grid integration,” TPEL, 2022.
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TEXAS
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Efficiency Characterization

Novel magnetics design facilitates zero voltage switching across the full ac cycle.
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1Majmunovic’,, Mukherjee, Mallik, Dutta, Seo, Johnson, Maksimovié, “Soft-switching over the entire line cycle in a quadruple active bridge-based DC to three-phase AC module,”
APEC, 2020.
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Medium-voltage Isolation
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Control signals are exchanged between grounded primary and floating secondaries.
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Medium-voltage Isolation
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Optical cables exchange signals between both sides.
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Medium-voltage Isolation
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Planar PCB-based high-frequency transformers withstand medium voltages.
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Medium-voltage Isolation TEXAS
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A novel PCB with Kapton dielectric between adjacent layers was built.

Primary
. Microcontroller

Secondary C

Secondary A Magnetics

Optical cables

Secondary B

10/18



Medium-voltage Isolation TEXAS
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Medium-voltage transformer has an ELP102 core, 5 layers/winding, 5 turns/layer, 2 oz copper.
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1Mukherjee, Majmunovié, Seo, Dutta, Mallik, Johnson, Maksimovi¢, “A high-frequency planar transformer with medium-voltage isolation,” APEC, 2021.
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Medium-voltage Isolation

High-potential experimental measurements show isolation >25kV.

TEXAS
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1 Mukherjee, Majmunovi¢, Seo, Dutta, Mallik, Johnson, Maksimovié, “A high-frequency planar transformer with medium-voltage isolation,” APEC, 2021.
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Scalable Decentralized Controls TEXAS

The University of Texas at Austin

Each particular controller and its plant are designed to operate at distinct timescales.
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Scalable Decentralized Controls TEXA

The University of Texas at Austin

Timescale separation facilitates decoupled design of each loop & ensures stability.
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TEXAS
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Scalable Decentralized Controls

Measurements showing all four control loops working in concert within a block.
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lMaIIik, Majmunovi¢, Dutta, Seo, Maksimovi¢, Johnson, “Control design of series-connected PV-powered grid-forming converters via singular perturbation,” TPEL, 2023.
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Scalable Decentralized Controls

@ TEXAS

The Uni

Fully decentralized PLL-free ac-side controls use dispatchable virtual oscillator control.
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Scalable Decentralized Controls TEXAS
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1Dutta, Lu, Mallik, Majmunovi¢, Mukherjee, Seo, Maksimovi¢, Johnson, “Decentralized control of cascaded H-bridge inverters for medium-voltage grid integration,” COMPEL, 202017 / 18



Looking Ahead to the Future

B Validation at medium voltage will happen when next big project arrives.
B Extending to SSTs, Extreme Fast EV Chargers, and various applications.
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Thanks for your attention!

Brian Johnson
b.johnson@utexas.edu



